Re: WeibullDistribution
- To: mathgroup at smc.vnet.net
- Subject: [mg42449] Re: WeibullDistribution
- From: bobhanlon at aol.com (Bob Hanlon)
- Date: Wed, 9 Jul 2003 08:24:25 -0400 (EDT)
- References: <bee0f9$fhd$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Needs["Statistics`ContinuousDistributions`"]; data=RandomArray[WeibullDistribution[5, 2],{100}]; To get an initial estimate of the parameters est = FindRoot[{ Mean[WeibullDistribution[a, b]]==Mean[data], Variance[WeibullDistribution[a, b]]==Variance[data]}, {a,1},{b,1}] {a -> 4.882178679882784, b -> 1.9493985547665071} You want to maximize the log likelihood function given by llf = Simplify[Plus @@ (Log[PDF[WeibullDistribution[a,b],#]]& /@ data)]; The MLE estimates of the parameters are then FindRoot[Evaluate[{D[llf,a]==0,D[llf,b]==0}], {a,est[[1,2]]}, {b, est[[2,2]]}] {a -> 4.923904837274986, b -> 1.9483453144994602} Bob Hanlon In article <bee0f9$fhd$1 at smc.vnet.net>, ce.choa.phen.kee at philips.com wrote: << I have a set of data, but how can I find out the A and B in WeibullDistribution[ A , B ] ? There isn't much informaion regarding the WeibullDistribution provided in the Help Browser. Anyone pls help???