Re: NonlinearFit
- To: mathgroup at smc.vnet.net
- Subject: [mg42223] Re: NonlinearFit
- From: gohtk at rocketmail.com (goh tat kean)
- Date: Tue, 24 Jun 2003 01:27:10 -0400 (EDT)
- References: <bd6j0m$ca7$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Dear Andy, Give a second thought on your problem, I shouldn't multiply your function and it's conjugate. Just expand the complex function a Exp[I Pi*b/180]/(x - c + I d)^2.5, ComplexExpand[a Exp[I Pi*b/180]/(x - c + I d)^2.5, TargetFunctions -> {Re, Im}] You will get something like, a Cos[b Pi/180] Cos[2.5 ArcTan[-c + x, d]]/(d^2 + (x - c)^2)^1.25 + (a Sin[ b Pi/180] Sin[2.5ArcTan[-c + x, d]]/(d^2 + (x - c)^2)^1.25) Use this function to do a NonlinearFit on your data. Rewrite your function, eq[x_, a_, b_, c_, d_] := Re[a Exp[I Pi*b/180]/(x - c + I d)^2.5] Generate some dummy data, data1 = Table[{x, eq[x, 5, 5, 5, 5]}, {x, 1, 10}] Load the NonlinearFit package, << Statistics`NonlinearFit` Start the fitting, ft1 = NonlinearFit[data1, a Cos[b Pi/180] Cos[2.5 ArcTan[-c + x, d]]/(d^2 + (x - c)^2)^1.25 + (a Sin[ b Pi/180] Sin[2.5ArcTan[-c + x, d]]/(d^2 + (x - c)^2)^1.25), x, {a, b, c, d}, ShowProgress -> True] Regards, tat kean