Re: UnitStep
- To: mathgroup at smc.vnet.net
- Subject: [mg40112] Re: UnitStep
- From: bobhanlon at aol.com (Bob Hanlon)
- Date: Fri, 21 Mar 2003 02:36:31 -0500 (EST)
- References: <b5bjhi$5r7$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
f[t_, a_, d_] := 1 - UnitStep[Mod[t, a+d] - d]; Plot[f[t, 1, 2], {t, 0, 10}]; Bob Hanlon In article <b5bjhi$5r7$1 at smc.vnet.net>, guillerm at aida.usal.es (Guillermo Sanchez) wrote: << Subject: UnitStep From: guillerm at aida.usal.es (Guillermo Sanchez) To: mathgroup at smc.vnet.net Date: Thu, 20 Mar 2003 05:28:18 +0000 (UTC) Dear friend, I want build a function where f(t) = 1 in intervals {{0, d}, {a +d , a + 2 d}, {2 a+2 d, 2 a + 3 d}, {3 a + 3d, 3 a + 4 d}, ...{(n-1) (a+d) , (n-1) a + n d}} and f(t) = 0 in intervals {{d, a+d}, {a + 2 d, 2 a + 2 d}, {2 a + 3 d, 3 a + 3d}, ....,{(n-1) a + n d, n a + n d}} I apply UnipStep as follow f[j_, a_, d_] := UnitStep[Product[t - n*(a + d), {n, 0, j + 1}]*Product[t - (n*(a + d) + d), {n, 0, j}]] But I suposse anyone will be a better idea. Guillermo >><BR><BR>