Re: Simplify needs ages to finish
- To: mathgroup at smc.vnet.net
- Subject: [mg44767] Re: Simplify needs ages to finish
- From: Roland Franzius <roland.franzius at uos.de>
- Date: Tue, 25 Nov 2003 00:45:36 -0500 (EST)
- Organization: Universitaet Hannover
- References: <bpn2r5$lhj$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Thomas Gutzler wrote: 1) At least three syntax errors are in this text. Look for & & instead && 2) Rewrite your SetDelayed in the following form o1[a1_, a2_, a3_, a4_, b1_, b2_, b3_, b4_] := Evaluate[LogicalExpand[righthandside]] This will save you some time but only if: 3) you state the definitions in reverse order. Otherwise you are getting lost alredy at definition time. 4) write a test set test= Rule@@@Transpose[{{a1,a1,...b4},Table[If[Random[]<0.5,True,False],{8}]}] and test your definitions using values Replace[#,test]&/@op[a1..] 5) You need at least 256 MB memory. Otherwise disk swapping becomes time consuming 6)dont print the full result. (I have not seen it;-) Probably it will take 100 times the memory used to represent the result internally. 7) Try Xor[1 && 2 || 3 && 4, 5 && 6 || 7 && 8, 9 && 10 || 11 && 12] // LogicalExpand to see the explosion of logical combinations. Try to write the result using Partition. The complexity is seen by considering the value table: 2^8 =256 possible input values for a1..b4 \in{True,False}. It will be easier to calculate this table using all possible values of True,False instead of symbolic expressions. -- Roland Franzius > Hi, > > I've got the following simple (well, IMO) boolean equations and can't > believe that it takes more than 2 hours on an Intel(R) Xeon(TM) CPU > 2.00GHz to evaluate the last output: foo[a1, a2, a3, a4, b1, b2, b3, b4] > I'm using mathematica 4.1. > > Am I doing something wrong? > > cheers, > Tom > > Here comes the code: > > o1[a1_, a2_, a3_, a4_, b1_, b2_, b3_, b4_] := > (a4 && b1 && b2 && b3 && b4) || (a1 && a4 && b2 && b3 && b4) || > (a2 && a4 && b1 && b3 && b4) || (a1 && a2 && a4 && b3 && b4) || > (a3 && a4 && b1 && b2 && b4) || (a1 && a3 && a4 && b2 && b4) || > (a2 && a3 && a4 && b1 && b4) || (a1 && a2 && a3 && a4 && b4) || > (a3 && b1 && b2 && b3) || (a1 && a3 && b2 && b3) || > (a2 && a3 && b1 && b3) || (a1 && a2 && a3 && b3) || > (a2 && b1 && b2) || (a1 && a2 && b2) || (a1 & & b1); > > o2[a1_, a2_, a3_, a4_, b1_, b2_, b3_, b4_] := > (a1 && !a4 && !b1 && !b2 && !b3) || (!a1 && !a4 && b1 && !b2 && !b3) || > (a1 && !a2 && !a4 && !b1 && !b3) || (!a1 && !a2 && !a4 && b1 && !b3) || > (a1 && !a3 && !a4 && !b1 && !b2) || (!a1 && !a3 && !a4 && b1 && !b2) || > (a1 && !a2 && !a3 && !a4 && !b1) || (!a1 && !a2 && !a3 && !a4 && b1) || > (a1 && !b1 && !b2 && !b3 && !b4) || (!a1 && b1 && !b2 && !b3 && !b4) || > (a1 && !a2 && !b1 && !b3 && !b4) || (!a1 && !a2 && b1 && !b3 && !b4) || > (a1 && !a3 && !b1 && !b2 && !b4) || (!a1 && !a3 && b1 && !b2 && !b4) || > (a1 && !a2 && !a3 && !b1 && !b4) || (!a1 && !a2 & &!a3 && b1 && !b4) || > (!a1 && a4 && !b1 && b2 && b3 && b4) || > (!a1 && a2 && a4 && !b1 && b3 && b4) || > (!a1 && a3 && a4 && !b1 && b2 && b4) || > (!a1 && a2 && a3 && a4 && !b1 && b4) || > (a1 && a4 && b1 && b2 && b3 && b4) || > (a1 && a2 && a4 && b1 && b3 && b4) || > (a1 && a3 && a4 && b1 && b2 && b4) || > (a1 && a2 && a3 && a4 && b1 && b4) || > (a1 && !a3 && !b1 && !b2 && !b3) || (!a1 && !a3 && b1 && !b2 && !b3) || > (a1 && !a2 && !a3 && !b1 && !b3) || (!a1 && !a2 && !a3 && b1 && !b3) || > (!a1 && a3 && !b1 && b2 && b3) || (!a1 && a2 && a3 && !b1 && b3) || > (a1 && a3 && b1 && b2 && b3) || (a1 && a2 && a3 && b1 && b3) || > (a1 && !a2 && !b1 && !b2) || (!a1 && !a2 && b1 && !b2) || > (!a1 && a2 && !b1 && b2) || (a1 && a2 && b1 && b2); > > o3[a1_, a2_, a3_, a4_, b1_, b2_, b3_, b4_] := > (a2 && !a4 && !b2 && !b3) || (!a2 && !a4 && b2 && !b3) || > (a2 && !a3 && !a4 && !b2) || (!a2 && !a3 && !a4 && b2) || > (a2 && !b2 && !b3 && !b4) || (!a2 && b2 && !b3 && !b4) || > (a2 && !a3 && !b2 && !b4) || (!a2 && !a3 && b2 && !b4) || > (!a2 && a4 && !b2 && b3 & & b4) || (!a2 && a3 && a4 && !b2 && b4) || > (a2 && a4 && b2 && b3 && b4) || (a2 && a3 && a4 && b2 && b4) || > (a2 && !a3 && !b2 && !b3) || (!a2 && !a3 && b2 && !b3) || > (!a2 && a3 && !b2 && b3) || (a2 && a3 && b2 && b3); > > o4[a1_, a2_, a3_, a4_, b1_, b2_, b3_, b4_] := > (!a3 && a4 && !b3 && b4) || (a3 && a4 && b3 && b4) || > (a3 && !b3 && !b4) || (!a3 && b3 && !b4) || (a3 && !a4 && !b3) || > (!a3 && !a4 && b3); > > o5[a1_, a2_, a3_, a4_, b1_, b2_, b3_, b4_] := > (a4 && !b4) || (!a4 && b4); > > oparity[a1_, a2_, a3_, a4_, b1_, b2_, b3_, b4_] := > Xor[o1[a1, a2, a3, a4, b1, b2, b3, b4], > o2[a1, a2, a3, a4, b1, b2, b3, b4], > o3[a1, a2, a3, a4, b1, b2, b3, b4], > o4[a1, a2, a3, a4, b1, b2, b3, b4], > o5[a1, a2, a3, a4, b1, b2, b3, b4]]; > > foo[a1_, a2_, a3_, a4_, b1_, b2_, b3_, b4_] := > Simplify[Xor[oparity[a1, a2, a3, a4, b1, b2, b3, b4], > !oparity[!a1, !a2, !a3, !a4, !b1, !b2, !b3, !b4]]]; > > foo[a1, a2, a3, a4, b1, b2, b3, b4] >