Re: Defining Operators
- To: mathgroup at smc.vnet.net
- Subject: [mg44803] Re: Defining Operators
- From: Roberto Brambilla <rlbrambilla at cesi.it>
- Date: Thu, 27 Nov 2003 11:38:29 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Hi Guthery, try this IntegrationOperator[f_,s_]:= Module[{func}, func=Function@@{f /.s -> #1}; Integrate[func[s],{s,0,1}] where s is the integration variable, that, of course, must be present in the arguments of the function to be integrate. Example g[x_,y_,z_]:=x Cos[w y] Tanh[m z] f[[t_,y_]:=Evaluate[IntegrationOperator[g[x,t,y],x] h[x_,q_]:=Evaluate[IntegrationOperator[g[x,t,q],t] r[x1_,x2_]:=Evaluate[IntegrationOperator[g[x1,x2,s],s] ?f f[t_,y_]:=1/2 Cos[w t] Tanh[m y] ?h h[x_]:= x Sin[w]Tanh[mq]/w ?t r[x1_,x2_]:=x1 Cos[w x2]Log[Cosh[m]]/m You can also add a kernel to integrals , as in integral transforms Kern[x_,y_]:= Exp[ - x y] myTransform[f_,x_,p_]:= Module[{func}, func=Function@@{f /.x-> #1}; Integrate[func[x]Kern[x,p],{x,0,Infinity},GenerateConditions->False]] Example: myTransform[BesselJ[0,w y],y,z] 1/Sqrt[w^2+z^2] Bye Rob Roberto Brambilla CESI Via Rubattino 54 20134 Milano tel +39.02.2125.5875 fax +39.02.2125.5492 rlbrambilla at cesi.it