Re: why the overflow problems when using assigned values a,b,c vs. actual numbers?
- To: mathgroup at smc.vnet.net
- Subject: [mg47286] Re: why the overflow problems when using assigned values a,b,c vs. actual numbers?
- From: adam.smith at hillsdale.edu (Adam Smith)
- Date: Fri, 2 Apr 2004 03:30:40 -0500 (EST)
- References: <c3udjo$9oa$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
The problem is in interpreting the hierachy of operations. Although it is a bit confusing from your post, I believe that the overflow message occurred for 55^66^9999 Following the strict rule for functions this is interpreted as: 55^(66^9999) and does result in an overflow because it is 55^"some very large #" When you did it "by hand" you actually calculated: (55^66)^9999 Which although large is less than 55^(66^9999) As an illustration, look at the following: In[1]:= 2^3^5 - (2^3)^5 Out[1]= 14134776518227074636666380005943348126619871175004951664972849610340925440 In[2]:= 2^3^5 - 2^(3^5) Out[2]= 0 Adam Smith angelomuscat at hotmail.com (Angelomuscot) wrote in message news:<c3udjo$9oa$1 at smc.vnet.net>... > In[4]:= > a^b^c > > From In[4]:= > \!\(\* > RowBox[{\(General::"ovfl"\), \(\(:\)\(\ \)\), "\<\"Overflow occurred in > computation. \\!\\(\\* > ButtonBox[\\\"More?\\\", ButtonStyle->\\\"RefGuideLinkText\\\", \ > ButtonFrame->None, ButtonData:>\\\"General::ovfl\\\"]\\)\"\>"}]\) > > Out[4]= > Overflow[] > > > BUT: > > > In[5]:= > 55^66 > > Out[5]= > 731033882825428434868476575930782273126401013456960378520411040255228224491595\ > 9896758295144536532461643218994140625 > > AND: > > > In[6]:= > 731033882825428434868476575930782273126401013456960378520411040255228224491595\ > 9896758295144536532461643218994140625^9999 > > Out[6]= > 324435743026028411717137084061237264526219685216276129069023086825090331034660\ > 676665460723467189974666799995743247466131925812897291499441793137947555612536\ > 092421118314787654069082988115339735757216388900285000082086886335511569652852\ > 500263751674419665228680993690435411655145421410867274348110658556086214283365\ > 487135310798129419106466657959487644096476639904142566621230014860021099758543\ > 910954184101810811243635968105694215589199277340922844665229795860970932927093\ > 903345342752805464134966818654081439739120197946231129464627625012794671009998\ > 274359074530338140109206089638200488364546090150940246659339109043696118031372\ > 530229742420103382591767900803138236103333789801675407210281125877301931298582\ > 300805788634261795727656073447660759207065107223222708688839651995612311889355\ > 907880386641679940642234768258450802716406293806036524748397672748983611445384\ > 903487466762791631032467508663336994739192371927330510682138180717769732067749\ > 813501627841812758363929902531268898592878366178908663561750678535422233327625\ > 309575011655608248360131500306432201250794818750558867930521429337718150047296\ > 888336494742592017263553596945560876788157860833558579449016137257870975373087\ > 228356365814869002266730157625647704291110893516697268716876172879316855159957\ > 249338111919269666676887164960924916445306418866716796634486117175329048684133\ > 301016184440562120694227194264220575350962432082369096353855300481550347098452\ > 159840773974548827666680165398142221744568827681254444318727439225820408470415\ > 862655480837303079223588987494927630307638662080907343807292397894202706574609\ > 442396217212137554114074188711173060955489002935067115527269579691249441940347\ > ETC........