MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: number of switches


It's hard to say which is the "easiest". This one does the job:

In[1]:=
digs = Table[Random[Integer, {0, 1}], {10}]
Out[1]=
{0, 1, 0, 1, 0, 1, 0, 0, 0, 1}

In[2]:=
Length[Split[digs]] - 1
Out[2]=
7

Tomas Garza
Mexico City
----- Original Message ----- 
From: "fake" <fake at fake.it>
To: mathgroup at smc.vnet.net
Subject: [mg47506] [mg47479] number of switches


> Consider the lists {1,1,0,1} and {1,1,0,0},{1,0,1,0,1}.
> The first sequence (1101) switches 2 times (#2digit~#3digit,
> #3digit~#4digit}, the second (1100) 1 time, the third 10101 4 times.
> 
> I have the following problem.
> Consider a list of binary digits. Which is the easiest way to count the
> number of switches of the list (using Mathematica commands)?
> 
> 


  • Prev by Date: Alternative to defining 'operator' function?
  • Next by Date: Re: number of switches
  • Previous by thread: Re: number of switches
  • Next by thread: Re: number of switches