Re: A simple integral
- To: mathgroup at smc.vnet.net
- Subject: [mg47606] Re: [mg47596] A simple integral
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Sun, 18 Apr 2004 04:15:03 -0400 (EDT)
- References: <200404170631.CAA16293@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
On 17 Apr 2004, at 15:31, Dr A.H. Harker wrote: > A simple integration, under Version 4.1.2: > > Integrate[x^2 Exp[-(x-$B&L(B)^2/(2 $B&R(B^2)],{x,-$B!g(B,$B!g(B}] > > 2 > If[Re[$B&R(B ] > 0, > > 2 > Sqrt[2 Pi] Sqrt[$B&R(B ] > > 2 2 > ($B&L(B + $B&R(B ), > > 2 > x > Integrate[----------------, > 2 2 > (x - $B&L(B) /(2 $B&R(B ) > E > > {x, -Infinity, Infinity}]] > > and the same under 5.0 > > Integrate[x^2 Exp[-(x-$B&L(B)^2/(2 $B&R(B^2)],{x,-$B!g(B,$B!g(B}] > > 2 $B&L(B > If[Re[$B&R(B ] > 0 && Re[--] < 0, > 2 > $B&R(B > > 2 2 > Sqrt[2 Pi] $B&L(B ($B&L(B + $B&R(B ) > -(----------------------), > 2 > $B&L(B > Sqrt[--] > 2 > $B&R(B > > 2 > x > Integrate[----------------, > 2 2 > (x - $B&L(B) /(2 $B&R(B ) > E > > {x, -Infinity, Infinity}, > > Assumptions -> > > $B&L(B 2 > Re[--] >= 0 || Re[$B&R(B ] <= 0 > 2 > $B&R(B > > ]] > > Two questions: > 1. Whence the extra condition in Version 5? > 2. Why the negative sign in Version 5? Using PowerExpand then gives > a negative result for this integral which is patently, for real > parameters, positive. > > Am I alone in feeling that Version 5 has introduced more problems than > it has solved? > > Dr A.H. Harker > Department of Physics and Astronomy > University College London > Gower Street > LONDON > WC1E 6BT > (44)(0)207 679 3404 > a.harker at ucl.ac.uk > > The price of progress ;-) However, note that (in 5.0) Integrate[x^2*Exp[-(x - $B&L(B)^2/(2*$B&R(B^2)], {x, -Infinity, Infinity}, Assumptions -> {$B&R(B > 0}] Sqrt[2*Pi]*$B&R(B*($B&L(B^2 + $B&R(B^2) Andrzej Kozlowski Chiba, Japan http://www.mimuw.edu.pl/~akoz/
- References:
- A simple integral
- From: "Dr A.H. Harker" <a.harker@ucl.ac.uk>
- A simple integral