MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Interesting integral problem

  • To: mathgroup at smc.vnet.net
  • Subject: [mg47716] Interesting integral problem
  • From: Arturas Acus <acus at itpa.lt>
  • Date: Fri, 23 Apr 2004 02:30:44 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

Dear Group,

The following integral http://www.itpa.lt/mathematica/IntegralProblem.nb
was my headache for a week, still I cannot decide if it can be expressed
using elementary or special functions. The problem is if one has two
quite similar integrals, one of them can be calculated explicitly, other
seems not. What is so special about the first? If somebody could look at
it I would be very gratefull.

(************** Content-type: application/mathematica **************
                     CreatedBy='Mathematica 5.0'

                    Mathematica-Compatible Notebook

This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.

To get the notebook into a Mathematica-compatible application, do
one of the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the
  application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: info at wolfram.com
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
*******************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[     13477,        417]*)
(*NotebookOutlinePosition[     14540,        452]*)
(*  CellTagsIndexPosition[     14496,        448]*)
(*WindowFrame->Normal*)



Notebook[{
Cell["\<\
Dear Group,

The following integral was my headache for a week, still I cannot \
decide if it can be expressed using elementary or special functions. \
If somebody could look at it I would be very gratefull.

 The task is to integrate  integral bellow in spherical coordinates \
(do not forget to multiply it by Sin[\[Theta]]).\
\>", "Text",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(\(initialProblem = \(3\ Cos[\[Theta]]\^2\ Sin[\[Theta]]\^4\ \
Sin[2\ \[CurlyPhi]]\^2\)\/\((1 - Sin[\[Theta]]\^2 + Sin[\[Theta]]\^4\ \
\((1 - Sin[\[CurlyPhi]]\^2 + Sin[\[CurlyPhi]]\^4)\))\)\^2;\)\)], \
"Input",
  CellLabel->"In[1]:=",
  CellAutoOverwrite->False],

Cell["\<\
If we first integrate by \[Theta] (integratation of \
\[CurlyPhi] first gives less promising rezult and looks like a dead \
end) , after a lot of simplification hints we can arrive to the \
following integral over \[CurlyPhi]:\
\>", "Text",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(\(\(intEquivalent = \(-\(\(6\ \((\(-1\) + 
                      a)\)\ \((4\ \@\(7 + a\) + \@2\ \((5 + 
                            a)\)\ \[Pi])\)\)\/\(\((5 + 
                      a)\)\ \((7 + a)\)\^\(3/2\)\)\)\) - \(24\ \
\((\(-1\) + a)\)\ \((6 + a)\)\ Log[\(-\@\(5 + a\)\) + \@\(7 + \
a\)]\)\/\((\((5 + a)\)\ \((7 + a)\))\)\^\(3/2\) + \(24\ \((\(-1\) + \
a)\)\ \((6 + a)\)\ Log[\@\(5 + a\) + \@\(7 + a\)]\)\/\((\((5 + a)\)\ \
\((7 + a)\))\)\^\(3/2\);\)\(\[IndentingNewLine]\)
    \)\)], "Input",
  CellLabel->"In[2]:=",
  CellAutoOverwrite->False],

Cell["\<\
with a=Cos[4 \[CurlyPhi]]. The following numerical check  \
ensures, that no mistake was made.\
\>", "Text",
  CellAutoOverwrite->False],

Cell[CellGroupData[{

Cell[BoxData[{
    \(\[Theta]Rand = Random[Real, {0, \[Pi]}]; \[CurlyPhi]Rand = 
      Random[Real, {0, 2\ \[Pi]}]; 
    aRand = Cos[4\ \[CurlyPhi]Rand];\), "\[IndentingNewLine]", 
    \({NIntegrate[
        initialProblem*Sin[\[Theta]], {\[CurlyPhi], 0, 
          2*\[Pi]}, {\[Theta], 0, \[Pi]}], 
      NIntegrate[
        Evaluate[
          initialProblem*
              Sin[\[Theta]] /. \[CurlyPhi] \[Rule] \[CurlyPhi]Rand], \
{\[Theta], 0, \[Pi]}]}\)}], "Input",
  CellLabel->"In[3]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    RowBox[{\(General::"spell1"\), \(\(:\)\(\ \)\), "\<\"Possible \
spelling error: new symbol name \\\"\\!\\(\[CurlyPhi]Rand\\)\\\" is \
similar to existing symbol \\\"\\!\\(\[Theta]Rand\\)\\\". \
\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \
ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::spell1\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[3]:="],

Cell[BoxData[
    \({2.750736494334113`, 0.5649250647272591`}\)], "Output",
  CellLabel->"Out[4]="]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
    \(intEquivalent /. a -> aRand // Chop\)], "Input",
  CellLabel->"In[5]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(0.5649250647272592`\)], "Output",
  CellLabel->"Out[5]="]
}, Open  ]],

Cell["And we hope for", "Text",
  CellAutoOverwrite->False],

Cell[CellGroupData[{

Cell[BoxData[
    \(NIntegrate[
      intEquivalent /. a \[Rule] Cos[4\ \[CurlyPhi]], {\[CurlyPhi], 
        0, 2*\[Pi]}]\)], "Input",
  CellLabel->"In[6]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(2.7507365480157735`\)], "Output",
  CellLabel->"Out[6]="]
}, Open  ]],

Cell["or better", "Text",
  CellAutoOverwrite->False],

Cell[CellGroupData[{

Cell[BoxData[
    \(4\ NIntegrate[
        intEquivalent /. a \[Rule] Cos[4\ \[CurlyPhi]], {\[CurlyPhi], 
          0, \[Pi]/2}]\)], "Input",
  CellLabel->"In[7]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(2.7507365480127253`\)], "Output",
  CellLabel->"Out[7]="]
}, Open  ]],

Cell["\<\
The problematic part is with the Log[ ]. Can it be \
integrated?\
\>", "Text",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(\(problematicPart = \(24\ \((\(-1\) + a)\)\ \((6 + a)\)\ \
Log[\(-\@\(5 + a\)\) + \@\(7 + a\)]\)\/\((\((5 + a)\)\ \((7 + a)\))\)\
\^\(3/2\) + \(24\ \((\(-1\) + a)\)\ \((6 + a)\)\ Log[\@\(5 + a\) + \@\
\(7 + a\)]\)\/\((\((5 + a)\)\ \((7 + a)\))\)\^\(3/2\);\)\)], "Input",
  CellLabel->"In[8]:=",
  CellAutoOverwrite->False],

Cell["\<\
If not, then what so special (from algebraic point of view) \
has the following quite similar integral, which do can be integrated \
explicitly (even undefined integration actually can be \
performed)\
\>", "Text",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(\(simpleProblem = \(12\ Sin[\[Theta]]\^2\ \((1 - \
Sin[\[Theta]]\^2 + Cos[\[CurlyPhi]]\^2\ Sin[\[Theta]]\^4\ Sin[\
\[CurlyPhi]]\^2)\)\)\/\((1 - Sin[\[Theta]]\^2 + Sin[\[Theta]]\^4\ \
\((1 - Sin[\[CurlyPhi]]\^2 + Sin[\[CurlyPhi]]\^4)\))\)\^2;\)\)], \
"Input",
  CellLabel->"In[10]:=",
  CellAutoOverwrite->False],

Cell["We hope for 16\[Pi]", "Text",
  CellAutoOverwrite->False],

Cell[CellGroupData[{

Cell[BoxData[
    \({NIntegrate[
        simpleProblem*Sin[\[Theta]], {\[CurlyPhi], 0, 
          2*\[Pi]}, {\[Theta], 0, \[Pi]}], 
      NIntegrate[
        Evaluate[
          simpleProblem*
              Sin[\[Theta]] /. \[CurlyPhi] \[Rule] \[CurlyPhi]Rand], \
{\[Theta], 0, \[Pi]}]}\)], "Input",
  CellLabel->"In[11]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    \({50.26548187126606`, 8.824897793155591`}\)], "Output",
  CellLabel->"Out[11]="]
}, Open  ]],

Cell["\<\
First integrating by \[Theta] and simplifying we get\
\>", \
"Text",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(\(simpleProblemEquivalent = \(96\ \((3 + a)\)\)\/\(\((5 + a)\)\ \
\((7 + a)\)\) + \(48\ \((1 + a\ \((6 + a)\))\)\ Log[\(-\@\(5 + a\)\) \
+ \@\(7 + a\)]\)\/\((\((5 + a)\)\ \((7 + a)\))\)\^\(3/2\) - \(48\ \
\((1 + a\ \((6 + a)\))\)\ Log[\@\(5 + a\) + \@\(7 + a\)]\)\/\((\((5 + \
a)\)\ \((7 + a)\))\)\^\(3/2\);\)\)], "Input",
  CellLabel->"In[12]:=",
  CellAutoOverwrite->False],

Cell["The numerical check ensures that all is correct", "Text",
  CellAutoOverwrite->False],

Cell[CellGroupData[{

Cell[BoxData[
    \(simpleProblemEquivalent /. a \[Rule] aRand\)], "Input",
  CellLabel->"In[13]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(8.824897793177056`\)], "Output",
  CellLabel->"Out[13]="]
}, Open  ]],

Cell["The problematic part", "Text",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(\(simpleProblemEquivalentProblematic = \((\(48\ \((1 + a\ \((6 \
+ a)\))\)\ Log[\(-\@\(5 + a\)\) + \@\(7 + a\)]\)\/\((\((5 + a)\)\ \
\((7 + a)\))\)\^\(3/2\) - \(48\ \((1 + a\ \((6 + a)\))\)\ Log[\@\(5 + \
a\) + \@\(7 + a\)]\)\/\((\((5 + a)\)\ \((7 + \
a)\))\)\^\(3/2\))\);\)\)], "Input",
  CellLabel->"In[14]:=",
  CellAutoOverwrite->False],

Cell["\<\
is of the same complexity as previous integral, but can be \
explicitly integrated:\
\>", "Text",
  CellAutoOverwrite->False],

Cell[CellGroupData[{

Cell[BoxData[
    \(4\ Integrate[
        simpleProblemEquivalentProblematic /. 
          a \[Rule] Cos[4\ \[CurlyPhi]], {\[CurlyPhi], 
          0, \[Pi]/2}]\)], "Input",
  CellLabel->"In[15]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(16\ \((1 - 2\ \@3 + \@6)\)\ \[Pi]\)], "Output",
  CellLabel->"Out[15]="]
}, Open  ]],

Cell["The rezult is correct:", "Text",
  CellAutoOverwrite->False],

Cell[CellGroupData[{

Cell[BoxData[
    \({16\ \((1 - 2\ \@3 + \@6)\)\ \[Pi] // N, 
      4\ NIntegrate[
          simpleProblemEquivalentProblematic /. 
            a \[Rule] Cos[4\ \[CurlyPhi]], {\[CurlyPhi], 
            0, \[Pi]/2}]}\)], "Input",
  CellLabel->"In[16]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    \({\(-0.7344728135092694`\), \(-0.7344728135092773`\)}\)], \
"Output",
  CellLabel->"Out[16]="]
}, Open  ]],

Cell["\<\
However if we alternatively rewrite the problematic part, \
the integration fails with $RecursionLimit and $IterationLimit \
errors. It also fails after Apart[], etc... etc....\
\>", "Text",
  CellAutoOverwrite->False],

Cell[BoxData[
    \(\(simpleProblemEquivalentProblematicBad = \(48\ \@\(\((5 + a)\)\
\ \((7 + a)\)\)\ \((1 + 6\ a + a\^2)\)\ Log[6 + a - \@\(5 + a\)\ \
\@\(7 + a\)]\)\/\(\(\((5 + a)\)\^2\)\(\ \)\(\((7 + a)\)\^2\)\(\ \)\);\
\)\)], "Input",
  CellLabel->"In[31]:=",
  CellAutoOverwrite->False],

Cell[CellGroupData[{

Cell[BoxData[
    \(4\ Integrate[
        simpleProblemEquivalentProblematicBad /. 
          a \[Rule] Cos[4\ \[CurlyPhi]], {\[CurlyPhi], 
          0, \[Pi]/2}]\)], "Input",
  CellLabel->"In[32]:=",
  CellAutoOverwrite->False],

Cell[BoxData[
    RowBox[{\($RecursionLimit::"reclim"\), \(\(:\)\(\ \)\), \
"\<\"Recursion depth of \\!\\(256\\) exceeded. \
\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \
ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"$RecursionLimit::reclim\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[32]:="],

Cell[BoxData[
    RowBox[{\($RecursionLimit::"reclim"\), \(\(:\)\(\ \)\), \
"\<\"Recursion depth of \\!\\(256\\) exceeded. \
\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \
ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"$RecursionLimit::reclim\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[32]:="],

Cell[BoxData[
    RowBox[{\($RecursionLimit::"reclim"\), \(\(:\)\(\ \)\), \
"\<\"Recursion depth of \\!\\(256\\) exceeded. \
\\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \
ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"$RecursionLimit::reclim\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[32]:="],

Cell[BoxData[
    RowBox[{\(General::"stop"\), \(\(:\)\(\ \)\), "\<\"Further output \
of \\!\\($RecursionLimit :: \\\"reclim\\\"\\) will be suppressed \
during this calculation. \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \
ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::stop\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[32]:="],

Cell[BoxData[
    RowBox[{\($IterationLimit::"itlim"\), \(\(:\)\(\ \)\), \
"\<\"Iteration limit of \\!\\(4096\\) exceeded. \\!\\(\\*ButtonBox[\\\
\"More\[Ellipsis]\\\", ButtonStyle->\\\"RefGuideLinkText\\\", \
ButtonFrame->None, \
ButtonData:>\\\"$IterationLimit::itlim\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[32]:="],

Cell[BoxData[
    RowBox[{\($IterationLimit::"itlim"\), \(\(:\)\(\ \)\), \
"\<\"Iteration limit of \\!\\(4096\\) exceeded. \\!\\(\\*ButtonBox[\\\
\"More\[Ellipsis]\\\", ButtonStyle->\\\"RefGuideLinkText\\\", \
ButtonFrame->None, \
ButtonData:>\\\"$IterationLimit::itlim\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[32]:="],

Cell[BoxData[
    RowBox[{\($IterationLimit::"itlim"\), \(\(:\)\(\ \)\), \
"\<\"Iteration limit of \\!\\(4096\\) exceeded. \\!\\(\\*ButtonBox[\\\
\"More\[Ellipsis]\\\", ButtonStyle->\\\"RefGuideLinkText\\\", \
ButtonFrame->None, \
ButtonData:>\\\"$IterationLimit::itlim\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[32]:="],

Cell[BoxData[
    RowBox[{\(General::"stop"\), \(\(:\)\(\ \)\), "\<\"Further output \
of \\!\\($IterationLimit :: \\\"itlim\\\"\\) will be suppressed \
during this calculation. \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \
ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \
ButtonData:>\\\"General::stop\\\"]\\)\"\>"}]], "Message",
  CellLabel->"From In[32]:="],

Cell[BoxData[
    \($Aborted\)], "Output",
  CellLabel->"Out[32]="]
}, Open  ]],

Cell["\<\
I rewrited the integral using various substitutions, in \
many forms. All in vain. Thought both these integrals seems quite \
similar, one can be integrated, whereas other no. This looks quite \
interesting and somehow unusual for me. For example if you look in \
Grandstein Rhyzik integral tables, you will find quite general \
formulas, integrability of which do not depend on, say what \
polynomial coefficients are. I home that somebody can shield a light \
on my problem.   THANKS.\
\>", "Text",
  CellAutoOverwrite->False]
},
FrontEndVersion->"5.0 for X",
ScreenRectangle->{{0, 3200}, {0, 2048}},
WindowToolbars->"EditBar",
Evaluator->"Local",
CellGrouping->Manual,
WindowSize->{1592, 1156},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
PrintingPageRange->{1, 5},
PrintingOptions->{"PaperSize"->{597.562, 842.375},
"PaperOrientation"->"Portrait",
"PostScriptOutputFile":>FrontEnd`FileName[{$RootDirectory, "home", \
"acus", "TMW", "Work", "Helis"}, "Helis.nb.ps", CharacterEncoding -> \
"iso8859-1"],
"Magnification"->1},
ShowSelection->True,
Magnification->1,
StyleDefinitions -> "KnygosStilius.nb"
]

(*******************************************************************
Cached data follows.  If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at
the top of  the file.  The cache data will then be recreated when
you save this file from within Mathematica.
*******************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{
Cell[1754, 51, 379, 10, 146, "Text"],
Cell[2136, 63, 281, 6, 81, "Input"],
Cell[2420, 71, 278, 6, 31, "Text"],
Cell[2701, 79, 571, 11, 110, "Input"],
Cell[3275, 92, 146, 4, 31, "Text"],

Cell[CellGroupData[{
Cell[3446, 100, 521, 13, 63, "Input"],
Cell[3970, 115, 406, 7, 28, "Message"],
Cell[4379, 124, 99, 2, 40, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4515, 131, 120, 3, 40, "Input"],
Cell[4638, 136, 77, 2, 40, "Output"]
}, Open  ]],
Cell[4730, 141, 59, 1, 31, "Text"],

Cell[CellGroupData[{
Cell[4814, 146, 186, 5, 40, "Input"],
Cell[5003, 153, 77, 2, 40, "Output"]
}, Open  ]],
Cell[5095, 158, 53, 1, 31, "Text"],

Cell[CellGroupData[{
Cell[5173, 163, 193, 5, 40, "Input"],
Cell[5369, 170, 77, 2, 40, "Output"]
}, Open  ]],
Cell[5461, 175, 116, 4, 31, "Text"],
Cell[5580, 181, 342, 6, 82, "Input"],
Cell[5925, 189, 252, 6, 54, "Text"],
Cell[6180, 197, 331, 7, 84, "Input"],
Cell[6514, 206, 63, 1, 31, "Text"],

Cell[CellGroupData[{
Cell[6602, 211, 352, 10, 40, "Input"],
Cell[6957, 223, 99, 2, 40, "Output"]
}, Open  ]],
Cell[7071, 228, 106, 4, 31, "Text"],
Cell[7180, 234, 395, 7, 82, "Input"],
Cell[7578, 243, 91, 1, 31, "Text"],

Cell[CellGroupData[{
Cell[7694, 248, 128, 3, 40, "Input"],
Cell[7825, 253, 77, 2, 40, "Output"]
}, Open  ]],
Cell[7917, 258, 64, 1, 31, "Text"],
Cell[7984, 261, 360, 7, 87, "Input"],
Cell[8347, 270, 135, 4, 31, "Text"],

Cell[CellGroupData[{
Cell[8507, 278, 225, 6, 40, "Input"],
Cell[8735, 286, 92, 2, 47, "Output"]
}, Open  ]],
Cell[8842, 291, 66, 1, 31, "Text"],

Cell[CellGroupData[{
Cell[8933, 296, 281, 7, 59, "Input"],
Cell[9217, 305, 113, 3, 40, "Output"]
}, Open  ]],
Cell[9345, 311, 228, 5, 31, "Text"],
Cell[9576, 318, 291, 6, 82, "Input"],

Cell[CellGroupData[{
Cell[9892, 328, 228, 6, 40, "Input"],
Cell[10123, 336, 328, 6, 28, "Message"],
Cell[10454, 344, 328, 6, 28, "Message"],
Cell[10785, 352, 328, 6, 28, "Message"],
Cell[11116, 360, 371, 6, 28, "Message"],
Cell[11490, 368, 327, 6, 28, "Message"],
Cell[11820, 376, 327, 6, 28, "Message"],
Cell[12150, 384, 327, 6, 28, "Message"],
Cell[12480, 392, 370, 6, 28, "Message"],
Cell[12853, 400, 67, 2, 40, "Output"]
}, Open  ]],
Cell[12935, 405, 538, 10, 77, "Text"]
}
]
*)



(*******************************************************************
End of Mathematica Notebook file.
*******************************************************************)



  • Prev by Date: RE: David's CombinatoricaGraphics functions
  • Next by Date: Symbol for Fourier-Transform pair?
  • Previous by thread: Re: Re: Distinguishable From 1.0
  • Next by thread: Symbol for Fourier-Transform pair?