MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Simplify or Cancel question

  • To: mathgroup at smc.vnet.net
  • Subject: [mg49907] Simplify or Cancel question
  • From: "Peter S Aptaker" <psa at laplacian.co.uk>
  • Date: Thu, 5 Aug 2004 09:22:31 -0400 (EDT)
  • References: <200406220931.FAA10262@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

The following is a derived expression (using integration and Curl operations
in M4.2)

In[176]:=
bloop ={(dz*(dz^2*(Ee-Ke)-Ke*(rp-rq)^2+Ee*(rp^2+rq^2)))/(2*Pi*
          rp*(dz^2+(rp-rq)^2)*Sqrt[dz^2+(rp+rq)^2]),

0,(dz^2*(-Ee+Ke)-(rp-rq)*(Ke*(-rp+rq)+Ee*(rp+rq)))/(2*Pi*(dz^2+(rp-rq)^2)*
          Sqrt[dz^2+(rp+rq)^2])}

bcheck is from books

In[159]:=
bcheck = {(dz/(2*Pi*rp*Sqrt[(rp +
              rq)^2 + dz^2]))*(-Ke + ((rq^2 + rp^2 + dz^2)/((
                  rq - rp)^2 + dz^2))*Ee), 0, (1/(
          2*Pi*Sqrt[(rp + rq)^2 + dz^2]))*(
                    Ke + ((rq^2 - rp^2 - dz^2)/((rq - rp)^2 + dz^2))*Ee)}

They are equivalent

In[168]:=
bloop - bcheck // FullSimplify
Out[168]=
{0, 0, 0}

Can anyone reduce my expression to the better presented bcheck form? I have
tried various options including

In[169]:=
Collect[bloop, {Ee, Ke}]


In[161]:=
bcheck // Expand // FullSimplify

and dabbled with using

elem={rp>0,rq>0,kk>0,Ee>0,Ke>0,Element[rp,Reals],Element[rq,Reals],
    Element[dz,Reals]}



  • Prev by Date: Binomial ratio expectation
  • Next by Date: 'Mathematica 5 not finding important resource'
  • Previous by thread: Re: Binomial ratio expectation
  • Next by thread: 'Mathematica 5 not finding important resource'