Simplify, FullSimplify, .....
- To: mathgroup at smc.vnet.net
- Subject: [mg50065] Simplify, FullSimplify, .....
- From: "Maurits Haverkort" <Haverkort at ph2.uni-koeln.de>
- Date: Fri, 13 Aug 2004 05:56:43 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Dear all Mathematica is almost perfect, since most of my algebra problems it can solve, but once in a while it does not. I want to simplify the following equation: \!\(\(-\(\(a\^2\ \((4\ \((\(-6\) + a\^2)\)\ pd\[Pi]\^2 - 3\ a\^2\ pd\[Sigma]\^2)\)\ \((4\ \@3\ \((\(-12\) + a\^4)\)\ pd\[Pi]\^2 - 12\ a\^2\ \((\(-2\) + a\^2)\)\ pd\[Pi]\ pd\[Sigma] + 3\ \@3\ a\^2\ \((\(-4\) + a\^2)\)\ pd\[Sigma]\^2)\)\)\/\(6\ \@\(\(-4\)\ a\^2\ \ \((\(-6\) + a\^2)\)\ pd\[Pi]\^2 + 3\ a\^4\ pd\[Sigma]\^2\)\ \((4\ \((\(-12\) \ + a\^4)\)\ pd\[Pi]\^2 - 4\ \@3\ a\^2\ \((\(-2\) + a\^2)\)\ pd\[Pi]\ pd\[Sigma] + 3\ a\^2\ \((\(-4\) + a\^2)\)\ pd\[Sigma]\^2)\)\)\)\)\) Furhter more I know that: \!\({{a, pd\[Sigma], pd\[Pi]} \[Element] Reals, a > 0, pd\[Sigma] < 0, pd\[Pi] > 0, a < \@3}\) I also know that the equation I want to simplify is equal to: \!\(1\/2\ \@\(8\ a\^2\ pd\[Pi]\^2 + a\^4\ \((\(-\(\(4\ pd\[Pi]\^2\)\/3\)\) + \ pd\[Sigma]\^2)\)\)\) How can I simplify this equation with Mathematica? I tried: \!\(FullSimplify[\(-\(\(a\^2\ \((4\ \((\(-6\) + a\^2)\)\ pd\[Pi]\^2 - 3\ a\^2\ pd\[Sigma]\^2)\)\ \((4\ \@3\ \((\(-12\) + a\^4)\)\ pd\[Pi]\^2 - 12\ a\^2\ \((\(-2\) + a\^2)\)\ pd\[Pi]\ pd\[Sigma] + 3\ \@3\ a\^2\ \((\(-4\) + a\^2)\)\ pd\[Sigma]\^2)\)\)\/\(6\ \@\(\(-4\)\ a\^2\ \((\ \(-6\) + a\^2)\)\ pd\[Pi]\^2 + 3\ a\^4\ pd\[Sigma]\^2\)\ \((4\ \((\(-12\) + a\^4)\)\ pd\[Pi]\^2 - 4\ \@3\ a\^2\ \((\(-2\) + a\^2)\)\ pd\[Pi]\ pd\[Sigma] + 3\ a\^2\ \((\(-4\) + a\^2)\)\ pd\[Sigma]\^2)\)\)\)\), {{a, pd\[Sigma], pd\[Pi]} \[Element] Reals, a > 0, pd\[Sigma] < 0, pd\[Pi] > 0, a < \@3}]\) But that did not do anything. I have some more equations alike, for wich I do not know the answer, so if there is a way to let Mathematica do my algebra better I would be glad. I am useing Mathematic 5.0.1.0 on windows 2000, AMD processor Best regards, Maurits Haverkort