Re: Simplify, FullSimplify, .....
- To: mathgroup at smc.vnet.net
- Subject: [mg50132] Re: Simplify, FullSimplify, .....
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Tue, 17 Aug 2004 05:00:41 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <cfi949$4r4$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, eqn = -(a^2*(4*(-6 + a^2)*pd\[Pi]^2 - 3*a^2*pd\[Sigma]^2)* (4*Sqrt[3]*(-12 + a^4)*pd\[Pi]^2 - 12*a^2*(-2 + a^2)* pd\[Pi]*pd\[Sigma] + 3*Sqrt[3]*a^2*(-4 + a^2)*pd\[Sigma]^2))/ (6*Sqrt[-4*a^2*(-6 + a^2)*pd\[Pi]^2 + 3*a^4*pd\[Sigma]^2]* (4*(-12 + a^4)*pd\[Pi]^2 - 4*Sqrt[3]*a^2*(-2 + a^2)* pd\[Pi]*pd\[Sigma] + 3*a^2*(-4 + a^2)*pd\[Sigma]^2)); and ((Numerator[eqn]^2/Denominator[eqn]^2 // FullSimplify // Expand) //. a^4*b_ + a^4*c_ :> a^4*(4*b + 4*c)/4 /. a_ + Rational[1, 4]*b_ :> (4*a + b)/4) // Sqrt Regards Jens Maurits Haverkort wrote: > > Dear all > > Mathematica is almost perfect, since most of my algebra problems it can > solve, but once in a while it does not. I want to simplify the following > equation: > > \!\(\(-\(\(a\^2\ \((4\ \((\(-6\) + a\^2)\)\ pd\[Pi]\^2 - > 3\ a\^2\ pd\[Sigma]\^2)\)\ \((4\ \@3\ \((\(-12\) + > a\^4)\)\ pd\[Pi]\^2 - > 12\ a\^2\ \((\(-2\) + a\^2)\)\ pd\[Pi]\ pd\[Sigma] + > 3\ \@3\ a\^2\ \((\(-4\) + > a\^2)\)\ pd\[Sigma]\^2)\)\)\/\(6\ \@\(\(-4\)\ a\^2\ \ > \((\(-6\) + a\^2)\)\ pd\[Pi]\^2 + 3\ a\^4\ pd\[Sigma]\^2\)\ \((4\ \((\(-12\) > \ > + a\^4)\)\ pd\[Pi]\^2 - > 4\ \@3\ a\^2\ \((\(-2\) + a\^2)\)\ pd\[Pi]\ pd\[Sigma] + > 3\ a\^2\ \((\(-4\) + a\^2)\)\ pd\[Sigma]\^2)\)\)\)\)\) > > Furhter more I know that: > \!\({{a, pd\[Sigma], pd\[Pi]} \[Element] Reals, a > 0, pd\[Sigma] < 0, > pd\[Pi] > 0, a < \@3}\) > > I also know that the equation I want to simplify is equal to: > > \!\(1\/2\ \@\(8\ a\^2\ pd\[Pi]\^2 + a\^4\ \((\(-\(\(4\ pd\[Pi]\^2\)\/3\)\) + > \ > pd\[Sigma]\^2)\)\)\) > > How can I simplify this equation with Mathematica? > > I tried: > > \!\(FullSimplify[\(-\(\(a\^2\ \((4\ \((\(-6\) + a\^2)\)\ pd\[Pi]\^2 - > 3\ a\^2\ pd\[Sigma]\^2)\)\ \((4\ \@3\ \((\(-12\) + > a\^4)\)\ pd\[Pi]\^2 - > 12\ a\^2\ \((\(-2\) + a\^2)\)\ pd\[Pi]\ pd\[Sigma] + > 3\ \@3\ a\^2\ \((\(-4\) + > a\^2)\)\ pd\[Sigma]\^2)\)\)\/\(6\ \@\(\(-4\)\ a\^2\ \((\ > \(-6\) + a\^2)\)\ pd\[Pi]\^2 + 3\ a\^4\ pd\[Sigma]\^2\)\ \((4\ \((\(-12\) + > a\^4)\)\ pd\[Pi]\^2 - > 4\ \@3\ a\^2\ \((\(-2\) + a\^2)\)\ pd\[Pi]\ pd\[Sigma] + > 3\ a\^2\ \((\(-4\) + a\^2)\)\ pd\[Sigma]\^2)\)\)\)\), {{a, > pd\[Sigma], pd\[Pi]} \[Element] Reals, a > 0, pd\[Sigma] < 0, > pd\[Pi] > 0, a < \@3}]\) > > But that did not do anything. > > I have some more equations alike, for wich I do not know the answer, so if > there is a way to let Mathematica do my algebra better I would be glad. > > I am using Mathematica 5.0.1.0 on windows 2000, AMD processor > > Best regards, > > Maurits Haverkort