Re: can this be solved in Mathematica 5.0?
- To: mathgroup at smc.vnet.net
- Subject: [mg50159] Re: [mg50140] can this be solved in Mathematica 5.0?
- From: DrBob <drbob at bigfoot.com>
- Date: Wed, 18 Aug 2004 01:20:09 -0400 (EDT)
- References: <200408170901.FAA09928@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
I seriously doubt it. Bobby On Tue, 17 Aug 2004 05:01:18 -0400 (EDT), Anonym2004 <anonym at bamboo.com> wrote: > Can the following equation: > > Out[3]= > \!\({P\_1 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_1\)\ C\_4 + B\_4\ \ > T\_1\)\/\((\(-b\) + V\_1)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_1\)\ > \ > C\_3 + B\_3\ T\_1\)\/\((\(-b\) + V\_1)\)\^4 + \(A\_2 + \ > \[ExponentialE]\^\(\(-K\)\ T\_1\)\ C\_2 + B\_2\ T\_1\)\/\((\(-b\) + \ > V\_1)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_1\)\ C\_1 + B\_1\ \ > T\_1\)\/\((\(-b\) + V\_1)\)\^2 + \(X\ T\_1\)\/\(\(-b\) + V\_1\), > P\_2 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_2\)\ C\_4 + B\_4\ T\_2\)\/\ > \((\(-b\) + V\_2)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_2\)\ C\_3 + > B\ > \_3\ T\_2\)\/\((\(-b\) + V\_2)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ > T\_2\)\ C\_2 + B\_2\ T\_2\)\/\((\(-b\) + V\_2)\)\^3 + \(A\_1 + \ > \[ExponentialE]\^\(\(-K\)\ T\_2\)\ C\_1 + B\_1\ T\_2\)\/\((\(-b\) + \ > V\_2)\)\^2 + \(X\ T\_2\)\/\(\(-b\) + V\_2\), > P\_3 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_3\)\ C\_4 + B\_4\ T\_3\)\/\ > \((\(-b\) + V\_3)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_3\)\ C\_3 + > B\ > \_3\ T\_3\)\/\((\(-b\) + V\_3)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ > T\_3\)\ C\_2 + B\_2\ T\_3\)\/\((\(-b\) + V\_3)\)\^3 + \(A\_1 + \ > \[ExponentialE]\^\(\(-K\)\ T\_3\)\ C\_1 + B\_1\ T\_3\)\/\((\(-b\) + \ > V\_3)\)\^2 + \(X\ T\_3\)\/\(\(-b\) + V\_3\), > P\_4 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_4\)\ C\_4 + B\_4\ T\_4\)\/\ > \((\(-b\) + V\_4)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_4\)\ C\_3 + > B\ > \_3\ T\_4\)\/\((\(-b\) + V\_4)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ > T\_4\)\ C\_2 + B\_2\ T\_4\)\/\((\(-b\) + V\_4)\)\^3 + \(A\_1 + \ > \[ExponentialE]\^\(\(-K\)\ T\_4\)\ C\_1 + B\_1\ T\_4\)\/\((\(-b\) + \ > V\_4)\)\^2 + \(X\ T\_4\)\/\(\(-b\) + V\_4\), > P\_5 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_5\)\ C\_4 + B\_4\ T\_5\)\/\ > \((\(-b\) + V\_5)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_5\)\ C\_3 + > B\ > \_3\ T\_5\)\/\((\(-b\) + V\_5)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ > T\_5\)\ C\_2 + B\_2\ T\_5\)\/\((\(-b\) + V\_5)\)\^3 + \(A\_1 + \ > \[ExponentialE]\^\(\(-K\)\ T\_5\)\ C\_1 + B\_1\ T\_5\)\/\((\(-b\) + \ > V\_5)\)\^2 + \(X\ T\_5\)\/\(\(-b\) + V\_5\), > P\_6 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_6\)\ C\_4 + B\_4\ T\_6\)\/\ > \((\(-b\) + V\_6)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_6\)\ C\_3 + > B\ > \_3\ T\_6\)\/\((\(-b\) + V\_6)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ > T\_6\)\ C\_2 + B\_2\ T\_6\)\/\((\(-b\) + V\_6)\)\^3 + \(A\_1 + \ > \[ExponentialE]\^\(\(-K\)\ T\_6\)\ C\_1 + B\_1\ T\_6\)\/\((\(-b\) + \ > V\_6)\)\^2 + \(X\ T\_6\)\/\(\(-b\) + V\_6\), > P\_7 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_7\)\ C\_4 + B\_4\ T\_7\)\/\ > \((\(-b\) + V\_7)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_7\)\ C\_3 + > B\ > \_3\ T\_7\)\/\((\(-b\) + V\_7)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ > T\_7\)\ C\_2 + B\_2\ T\_7\)\/\((\(-b\) + V\_7)\)\^3 + \(A\_1 + \ > \[ExponentialE]\^\(\(-K\)\ T\_7\)\ C\_1 + B\_1\ T\_7\)\/\((\(-b\) + \ > V\_7)\)\^2 + \(X\ T\_7\)\/\(\(-b\) + V\_7\), > P\_8 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_8\)\ C\_4 + B\_4\ T\_8\)\/\ > \((\(-b\) + V\_8)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_8\)\ C\_3 + > B\ > \_3\ T\_8\)\/\((\(-b\) + V\_8)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ > T\_8\)\ C\_2 + B\_2\ T\_8\)\/\((\(-b\) + V\_8)\)\^3 + \(A\_1 + \ > \[ExponentialE]\^\(\(-K\)\ T\_8\)\ C\_1 + B\_1\ T\_8\)\/\((\(-b\) + \ > V\_8)\)\^2 + \(X\ T\_8\)\/\(\(-b\) + V\_8\), > P\_9 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_9\)\ C\_4 + B\_4\ T\_9\)\/\ > \((\(-b\) + V\_9)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_9\)\ C\_3 + > B\ > \_3\ T\_9\)\/\((\(-b\) + V\_9)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ > T\_9\)\ C\_2 + B\_2\ T\_9\)\/\((\(-b\) + V\_9)\)\^3 + \(A\_1 + \ > \[ExponentialE]\^\(\(-K\)\ T\_9\)\ C\_1 + B\_1\ T\_9\)\/\((\(-b\) + \ > V\_9)\)\^2 + \(X\ T\_9\)\/\(\(-b\) + V\_9\), > P\_10 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_10\)\ C\_4 + B\_4\ \ > T\_10\)\/\((\(-b\) + V\_10)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ > T\_10\)\ C\_3 + B\_3\ T\_10\)\/\((\(-b\) + V\_10)\)\^4 + \(A\_2 + \ > \[ExponentialE]\^\(\(-K\)\ T\_10\)\ C\_2 + B\_2\ T\_10\)\/\((\(-b\) + \ > V\_10)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_10\)\ C\_1 + B\_1\ > T\_10\ > \)\/\((\(-b\) + V\_10)\)\^2 + \(X\ T\_10\)\/\(\(-b\) + V\_10\), > P\_11 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_11\)\ C\_4 + B\_4\ \ > T\_11\)\/\((\(-b\) + V\_11)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ > T\_11\)\ C\_3 + B\_3\ T\_11\)\/\((\(-b\) + V\_11)\)\^4 + \(A\_2 + \ > \[ExponentialE]\^\(\(-K\)\ T\_11\)\ C\_2 + B\_2\ T\_11\)\/\((\(-b\) + \ > V\_11)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_11\)\ C\_1 + B\_1\ > T\_11\ > \)\/\((\(-b\) + V\_11)\)\^2 + \(X\ T\_11\)\/\(\(-b\) + V\_11\), > P\_12 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_12\)\ C\_4 + B\_4\ \ > T\_12\)\/\((\(-b\) + V\_12)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ > T\_12\)\ C\_3 + B\_3\ T\_12\)\/\((\(-b\) + V\_12)\)\^4 + \(A\_2 + \ > \[ExponentialE]\^\(\(-K\)\ T\_12\)\ C\_2 + B\_2\ T\_12\)\/\((\(-b\) + \ > V\_12)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_12\)\ C\_1 + B\_1\ > T\_12\ > \)\/\((\(-b\) + V\_12)\)\^2 + \(X\ T\_12\)\/\(\(-b\) + V\_12\), > P\_13 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_13\)\ C\_4 + B\_4\ \ > T\_13\)\/\((\(-b\) + V\_13)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ > T\_13\)\ C\_3 + B\_3\ T\_13\)\/\((\(-b\) + V\_13)\)\^4 + \(A\_2 + \ > \[ExponentialE]\^\(\(-K\)\ T\_13\)\ C\_2 + B\_2\ T\_13\)\/\((\(-b\) + \ > V\_13)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_13\)\ C\_1 + B\_1\ > T\_13\ > \)\/\((\(-b\) + V\_13)\)\^2 + \(X\ T\_13\)\/\(\(-b\) + V\_13\), > P\_14 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_14\)\ C\_4 + B\_4\ \ > T\_14\)\/\((\(-b\) + V\_14)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ > T\_14\)\ C\_3 + B\_3\ T\_14\)\/\((\(-b\) + V\_14)\)\^4 + \(A\_2 + \ > \[ExponentialE]\^\(\(-K\)\ T\_14\)\ C\_2 + B\_2\ T\_14\)\/\((\(-b\) + \ > V\_14)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_14\)\ C\_1 + B\_1\ > T\_14\ > \)\/\((\(-b\) + V\_14)\)\^2 + \(X\ T\_14\)\/\(\(-b\) + V\_14\), > P\_15 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_15\)\ C\_4 + B\_4\ \ > T\_15\)\/\((\(-b\) + V\_15)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ > T\_15\)\ C\_3 + B\_3\ T\_15\)\/\((\(-b\) + V\_15)\)\^4 + \(A\_2 + \ > \[ExponentialE]\^\(\(-K\)\ T\_15\)\ C\_2 + B\_2\ T\_15\)\/\((\(-b\) + \ > V\_15)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_15\)\ C\_1 + B\_1\ > T\_15\ > \)\/\((\(-b\) + V\_15)\)\^2 + \(X\ T\_15\)\/\(\(-b\) + V\_15\)}\) > > be solved for the following unknowns: > > In[4]:= > \!\({X, b, K, A\_1, A\_2, A\_3, A\_4, B\_1, B\_2, B\_3, B\_4, C\_1, C\_2, > C\_3, C\_4}\) > > > -- DrBob at bigfoot.com www.eclecticdreams.net
- References:
- can this be solved in Mathematica 5.0?
- From: "Anonym2004" <anonym@bamboo.com>
- can this be solved in Mathematica 5.0?