can this be solved in Mathematica 5.0?
- To: mathgroup at smc.vnet.net
- Subject: [mg50140] can this be solved in Mathematica 5.0?
- From: "Anonym2004" <anonym at bamboo.com>
- Date: Tue, 17 Aug 2004 05:01:18 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Can the following equation: Out[3]= \!\({P\_1 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_1\)\ C\_4 + B\_4\ \ T\_1\)\/\((\(-b\) + V\_1)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_1\)\ \ C\_3 + B\_3\ T\_1\)\/\((\(-b\) + V\_1)\)\^4 + \(A\_2 + \ \[ExponentialE]\^\(\(-K\)\ T\_1\)\ C\_2 + B\_2\ T\_1\)\/\((\(-b\) + \ V\_1)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_1\)\ C\_1 + B\_1\ \ T\_1\)\/\((\(-b\) + V\_1)\)\^2 + \(X\ T\_1\)\/\(\(-b\) + V\_1\), P\_2 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_2\)\ C\_4 + B\_4\ T\_2\)\/\ \((\(-b\) + V\_2)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_2\)\ C\_3 + B\ \_3\ T\_2\)\/\((\(-b\) + V\_2)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ T\_2\)\ C\_2 + B\_2\ T\_2\)\/\((\(-b\) + V\_2)\)\^3 + \(A\_1 + \ \[ExponentialE]\^\(\(-K\)\ T\_2\)\ C\_1 + B\_1\ T\_2\)\/\((\(-b\) + \ V\_2)\)\^2 + \(X\ T\_2\)\/\(\(-b\) + V\_2\), P\_3 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_3\)\ C\_4 + B\_4\ T\_3\)\/\ \((\(-b\) + V\_3)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_3\)\ C\_3 + B\ \_3\ T\_3\)\/\((\(-b\) + V\_3)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ T\_3\)\ C\_2 + B\_2\ T\_3\)\/\((\(-b\) + V\_3)\)\^3 + \(A\_1 + \ \[ExponentialE]\^\(\(-K\)\ T\_3\)\ C\_1 + B\_1\ T\_3\)\/\((\(-b\) + \ V\_3)\)\^2 + \(X\ T\_3\)\/\(\(-b\) + V\_3\), P\_4 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_4\)\ C\_4 + B\_4\ T\_4\)\/\ \((\(-b\) + V\_4)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_4\)\ C\_3 + B\ \_3\ T\_4\)\/\((\(-b\) + V\_4)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ T\_4\)\ C\_2 + B\_2\ T\_4\)\/\((\(-b\) + V\_4)\)\^3 + \(A\_1 + \ \[ExponentialE]\^\(\(-K\)\ T\_4\)\ C\_1 + B\_1\ T\_4\)\/\((\(-b\) + \ V\_4)\)\^2 + \(X\ T\_4\)\/\(\(-b\) + V\_4\), P\_5 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_5\)\ C\_4 + B\_4\ T\_5\)\/\ \((\(-b\) + V\_5)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_5\)\ C\_3 + B\ \_3\ T\_5\)\/\((\(-b\) + V\_5)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ T\_5\)\ C\_2 + B\_2\ T\_5\)\/\((\(-b\) + V\_5)\)\^3 + \(A\_1 + \ \[ExponentialE]\^\(\(-K\)\ T\_5\)\ C\_1 + B\_1\ T\_5\)\/\((\(-b\) + \ V\_5)\)\^2 + \(X\ T\_5\)\/\(\(-b\) + V\_5\), P\_6 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_6\)\ C\_4 + B\_4\ T\_6\)\/\ \((\(-b\) + V\_6)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_6\)\ C\_3 + B\ \_3\ T\_6\)\/\((\(-b\) + V\_6)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ T\_6\)\ C\_2 + B\_2\ T\_6\)\/\((\(-b\) + V\_6)\)\^3 + \(A\_1 + \ \[ExponentialE]\^\(\(-K\)\ T\_6\)\ C\_1 + B\_1\ T\_6\)\/\((\(-b\) + \ V\_6)\)\^2 + \(X\ T\_6\)\/\(\(-b\) + V\_6\), P\_7 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_7\)\ C\_4 + B\_4\ T\_7\)\/\ \((\(-b\) + V\_7)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_7\)\ C\_3 + B\ \_3\ T\_7\)\/\((\(-b\) + V\_7)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ T\_7\)\ C\_2 + B\_2\ T\_7\)\/\((\(-b\) + V\_7)\)\^3 + \(A\_1 + \ \[ExponentialE]\^\(\(-K\)\ T\_7\)\ C\_1 + B\_1\ T\_7\)\/\((\(-b\) + \ V\_7)\)\^2 + \(X\ T\_7\)\/\(\(-b\) + V\_7\), P\_8 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_8\)\ C\_4 + B\_4\ T\_8\)\/\ \((\(-b\) + V\_8)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_8\)\ C\_3 + B\ \_3\ T\_8\)\/\((\(-b\) + V\_8)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ T\_8\)\ C\_2 + B\_2\ T\_8\)\/\((\(-b\) + V\_8)\)\^3 + \(A\_1 + \ \[ExponentialE]\^\(\(-K\)\ T\_8\)\ C\_1 + B\_1\ T\_8\)\/\((\(-b\) + \ V\_8)\)\^2 + \(X\ T\_8\)\/\(\(-b\) + V\_8\), P\_9 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_9\)\ C\_4 + B\_4\ T\_9\)\/\ \((\(-b\) + V\_9)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ T\_9\)\ C\_3 + B\ \_3\ T\_9\)\/\((\(-b\) + V\_9)\)\^4 + \(A\_2 + \[ExponentialE]\^\(\(-K\)\ \ T\_9\)\ C\_2 + B\_2\ T\_9\)\/\((\(-b\) + V\_9)\)\^3 + \(A\_1 + \ \[ExponentialE]\^\(\(-K\)\ T\_9\)\ C\_1 + B\_1\ T\_9\)\/\((\(-b\) + \ V\_9)\)\^2 + \(X\ T\_9\)\/\(\(-b\) + V\_9\), P\_10 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_10\)\ C\_4 + B\_4\ \ T\_10\)\/\((\(-b\) + V\_10)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ T\_10\)\ C\_3 + B\_3\ T\_10\)\/\((\(-b\) + V\_10)\)\^4 + \(A\_2 + \ \[ExponentialE]\^\(\(-K\)\ T\_10\)\ C\_2 + B\_2\ T\_10\)\/\((\(-b\) + \ V\_10)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_10\)\ C\_1 + B\_1\ T\_10\ \)\/\((\(-b\) + V\_10)\)\^2 + \(X\ T\_10\)\/\(\(-b\) + V\_10\), P\_11 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_11\)\ C\_4 + B\_4\ \ T\_11\)\/\((\(-b\) + V\_11)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ T\_11\)\ C\_3 + B\_3\ T\_11\)\/\((\(-b\) + V\_11)\)\^4 + \(A\_2 + \ \[ExponentialE]\^\(\(-K\)\ T\_11\)\ C\_2 + B\_2\ T\_11\)\/\((\(-b\) + \ V\_11)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_11\)\ C\_1 + B\_1\ T\_11\ \)\/\((\(-b\) + V\_11)\)\^2 + \(X\ T\_11\)\/\(\(-b\) + V\_11\), P\_12 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_12\)\ C\_4 + B\_4\ \ T\_12\)\/\((\(-b\) + V\_12)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ T\_12\)\ C\_3 + B\_3\ T\_12\)\/\((\(-b\) + V\_12)\)\^4 + \(A\_2 + \ \[ExponentialE]\^\(\(-K\)\ T\_12\)\ C\_2 + B\_2\ T\_12\)\/\((\(-b\) + \ V\_12)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_12\)\ C\_1 + B\_1\ T\_12\ \)\/\((\(-b\) + V\_12)\)\^2 + \(X\ T\_12\)\/\(\(-b\) + V\_12\), P\_13 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_13\)\ C\_4 + B\_4\ \ T\_13\)\/\((\(-b\) + V\_13)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ T\_13\)\ C\_3 + B\_3\ T\_13\)\/\((\(-b\) + V\_13)\)\^4 + \(A\_2 + \ \[ExponentialE]\^\(\(-K\)\ T\_13\)\ C\_2 + B\_2\ T\_13\)\/\((\(-b\) + \ V\_13)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_13\)\ C\_1 + B\_1\ T\_13\ \)\/\((\(-b\) + V\_13)\)\^2 + \(X\ T\_13\)\/\(\(-b\) + V\_13\), P\_14 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_14\)\ C\_4 + B\_4\ \ T\_14\)\/\((\(-b\) + V\_14)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ T\_14\)\ C\_3 + B\_3\ T\_14\)\/\((\(-b\) + V\_14)\)\^4 + \(A\_2 + \ \[ExponentialE]\^\(\(-K\)\ T\_14\)\ C\_2 + B\_2\ T\_14\)\/\((\(-b\) + \ V\_14)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_14\)\ C\_1 + B\_1\ T\_14\ \)\/\((\(-b\) + V\_14)\)\^2 + \(X\ T\_14\)\/\(\(-b\) + V\_14\), P\_15 == \(A\_4 + \[ExponentialE]\^\(\(-K\)\ T\_15\)\ C\_4 + B\_4\ \ T\_15\)\/\((\(-b\) + V\_15)\)\^5 + \(A\_3 + \[ExponentialE]\^\(\(-K\)\ \ T\_15\)\ C\_3 + B\_3\ T\_15\)\/\((\(-b\) + V\_15)\)\^4 + \(A\_2 + \ \[ExponentialE]\^\(\(-K\)\ T\_15\)\ C\_2 + B\_2\ T\_15\)\/\((\(-b\) + \ V\_15)\)\^3 + \(A\_1 + \[ExponentialE]\^\(\(-K\)\ T\_15\)\ C\_1 + B\_1\ T\_15\ \)\/\((\(-b\) + V\_15)\)\^2 + \(X\ T\_15\)\/\(\(-b\) + V\_15\)}\) be solved for the following unknowns: In[4]:= \!\({X, b, K, A\_1, A\_2, A\_3, A\_4, B\_1, B\_2, B\_3, B\_4, C\_1, C\_2, C\_3, C\_4}\)
- Follow-Ups:
- Re: can this be solved in Mathematica 5.0?
- From: DrBob <drbob@bigfoot.com>
- Re: can this be solved in Mathematica 5.0?