Re: Hypergeometric function
- To: mathgroup at smc.vnet.net
- Subject: [mg50202] Re: Hypergeometric function
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Fri, 20 Aug 2004 04:57:48 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <cg20ms$p0q$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, it depend on your input data, i. e., In[]:=Hypergeometric2F1[1, 2, 3, 0.5] Out[]=1.54518 In[]:=Hypergeometric2F1[1, 2, 3, 0.5`30] Out[]=1.54517744447956247533785697166 In[]:=Hypergeometric2F1[1, 2, 3, 0.5`300] Out[]=1.5451774444795624753378569716654125446040010748820420329654400759471489757575\ 577248469066159713495003360118481645654858694841618860650444562613660130806076\ 954458205666269714815224563089911333877689868009229159836419129638013814525994\ 5652124419787311620706360362405676261093314123283391326251961634992 Regards Jens Scott wrote: > > I have a finite alternating series of hypergeometric (2F1) functions. > These functions have complex parameters. When I sum the series I get > larger and larger values. My question is this, does anyone know how > precise Mathematica is when calculating a hypergeometric fn > numerically ie, how many sig figs are correct? > > I have done various transformations on the hypergeometric fn and then > summed the series. Each time I arrive at the same result. > > Thanks for any replies, > Scott