Re: Another Integrate error
- To: mathgroup at smc.vnet.net
- Subject: [mg52589] Re: [mg52573] Another Integrate error
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Fri, 3 Dec 2004 03:53:55 -0500 (EST)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
$Version 5.1 for Mac OS X (October 25, 2004) Clear[x,y,r]; f[x_,y_,r_]=Exp[(x^2+y^2-2*r*x*y)/(r^2-1)]/(Pi Sqrt[1-r^2]); Integrate[f[x,y,r],{x,-Infinity,Infinity},{y,-Infinity,Infinity}] 1 Integrate[f[x,y,r],{ x,-Infinity,Infinity},{y,-Infinity,Infinity},Assumptions->{Element[r, Reals],-1<r<1}] 1 Needs["Statistics`MultinormalDistribution`"]; dist=PDF[MultinormalDistribution[{0,0}, {{1,r},{r,1}}],{x,y}]//Simplify E^((x^2 - 2*r*y*x + y^2)/(2*(r^2 - 1)))/ (2*Pi*Sqrt[1 - r^2]) Integrate[dist,{x,-Infinity,Infinity},{y,-Infinity,Infinity}] 1 Bob Hanlon > > From: koopman at sfu.ca (Ray Koopman) To: mathgroup at smc.vnet.net > Date: 2004/12/02 Thu AM 02:21:45 EST > To: mathgroup at smc.vnet.net > Subject: [mg52589] [mg52573] Another Integrate error > > This is a bivariate normal probability density: > > In[1]:= f[x_,y_,r_] = Exp[(x^2 + y^2 - 2*r*x*y)/(r^2 - 1)] / > (Pi Sqrt[1 - r^2]); > > It should integrate to 1: > > In[2]:= Integrate[f[x,y,r],{x,-Infinity,Infinity},{y,-Infinity,Infinity}] > Out[2]= 0 > > In[3]:= Integrate[f[x,y,r],{x,-Infinity,Infinity},{y,-Infinity,Infinity}, > Assumptions -> {Element[r,Reals], -1 < r < 1}] > Out[3]= 1 > > In this case I happened to know that the integal should be 1, > but what about more obscure cases? > When can I believe a result from Integrate? > > In[4]:= $Version > Out[4]= 5.0 for Mac OS X (November 19, 2003) > >