binomial fraction subharmic functions-3rd, and 4th
- To: mathgroup at smc.vnet.net
- Subject: [mg52602] binomial fraction subharmic functions-3rd, and 4th
- From: Roger Bagula <tftn at earthlink.net>
- Date: Fri, 3 Dec 2004 03:54:41 -0500 (EST)
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
I got the subharmonics for three and four to work too. I used binomial fractions of (x+1)^n, n=3,4 Triplet: { 2*n/(1+n)2,1/(1+n)2,n2/(1+n)2} Quartet: {3*n/(1+n)3, 3*n2/(1+n)3,1/(1+n)3,n3/(1+n)3} (* using a set of functions that give a 3rd level subharmonic functions : *) (*triplet { 2*x/(1+x)^2},x^2/(1+x)^2,1/(1+x)^2*) (* resulting sum of functions is a circle*) f1[n_]:=2*n/(n+1)^2/;Mod[n,3]==1 f1[n_]:=n^2/(1+n)^2/;Mod[n,3]==2 f1[n_]:=1/(1+n)^2/;Mod[n,3]==0 f2[n_]:=2*n/(n+1)^2/;Mod[n,3]==2 f2[n_]:=n^2/(1+n)^2/;Mod[n,3]==0 f2[n_]:=1/(1+n)^2/;Mod[n,3]==1 f3[n_]:=2*n/(n+1)^2/;Mod[n,3]==0 f3[n_]:=n^2/(1+n)^2/;Mod[n,3]==1 f3[n_]:=1/(1+n)^2/;Mod[n,3]==2 f1sin[x_]:=Sum[(-1)^(n)*f1[n]*x^(2*n+1)/((2*n+1)!),{n,0,digits}] f1cos[x_]:=Sum[(-1)^(n)*f1[n]*x^(2*n)/((2*n)!),{n,0,digits}] f2sin[x_]:=Sum[(-1)^(n)*f2[n]*x^(2*n+1)/((2*n+1)!),{n,0,digits}] f2cos[x_]:=Sum[(-1)^(n)*f2[n]*x^(2*n)/((2*n)!),{n,0,digits}] f3sin[x_]:=Sum[(-1)^(n)*f3[n]*x^(2*n+1)/((2*n+1)!),{n,0,digits}] f3cos[x_]:=Sum[(-1)^(n)*f3[n]*x^(2*n)/((2*n)!),{n,0,digits}] Plot[f1sin[x],{x,-Pi,Pi}] Plot[f1cos[x],{x,-Pi,Pi}] ParametricPlot[{f1sin[x],f1cos[x]},{x,-Pi, Pi}] Plot[f2sin[x],{x,-Pi,Pi}] Plot[f2cos[x],{x,-Pi,Pi}] ParametricPlot[{f2sin[x],f2cos[x]},{x,-Pi, Pi}] Plot[f3sin[x],{x,-Pi,Pi}] Plot[f3cos[x],{x,-Pi,Pi}] ParametricPlot[{f3sin[x],f3cos[x]},{x,-Pi, Pi}] Plot[f1sin[x]+f2sin[x]+f3sin[x],{x,-Pi,Pi}] Plot[f1cos[x]+f2cos[x]+f3cos[x],{x,-Pi,Pi}] ParametricPlot[{f1sin[x]+f2sin[x]+f3sin[x],f1cos[x]+f2cos[x]+f3cos[x]},{x,-Pi,Pi}] Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn