Re: Complex Analysis using Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg52645] Re: [mg52621] Complex Analysis using Mathematica
- From: DrBob <drbob at bigfoot.com>
- Date: Sun, 5 Dec 2004 02:08:49 -0500 (EST)
- References: <200412040908.EAA13455@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
You haven't told us what you're trying to accomplish with all this, but here's a go anyway. ComplexExpand assumes all the parameters are real, by DEFAULT. lamda = a + I*b; z = lamda*p; toXY = Simplify[ComplexExpand[{Re[#1], Im[#1]}]] & ; toXY[z] {a*p, b*p} {u, v} = toXY@TrigToExp@Sinh@z {((1/2)*(-1 + E^(2*a*p))* Cos[b*p])/E^(a*p), ((1/2)*(1 + E^(2*a*p))* Sin[b*p])/E^(a*p)} Not sure why you want u[x,y] and v[x,y], since a, b, and p are the variables. Bobby On Sat, 4 Dec 2004 04:08:00 -0500 (EST), Pratik Desai <pdesai1 at umbc.edu> wrote: > Here we go again, > > I have to define a complex function > So I go through this procedure to define that the variables are really "real" > > TagSet[p, Im[p], 0]; > TagSet[a, Im[a], 0]; > TagSet[b, Im[b], 0]; > TagSet[p, Re[p], p]; > TagSet[a, Re[a], a]; > TagSet[b, Re[b], b]; > lamda = a + I*b > z = ComplexExpand[lamda*p] > x=Re[z] > y=Im[z] > TagSet[u, Im[u[x, y]], 0]; > TagSet[v, Im[v[x, y]], 0]; > TagSet[x, Re[x], x]; > TagSet[y, Re[y], y]; > TagSet[u, Re[u[x, y]], u[x, y]]; > TagSet[v, Re[v[x, y]], v[x, y]]; > > > Then I define my actual function > > u1 = TrigToExp[Sinh[z]] (*By this time I have realized that > Mathematica or for that matter most of the CAS work better with > exponentials when it comes to complex analysis*) > > u[x, y] = Re[u1] > v[x, y] = Im[u1] > > The problem I face is that the software is not able to identify x and y > as I have defined above. May be I am making a trivial mistake. Please > advise > > > > Thanks in advance > > Pratik Desai > > > > > -- DrBob at bigfoot.com www.eclecticdreams.net
- References:
- Complex Analysis using Mathematica
- From: "Pratik Desai" <pdesai1@umbc.edu>
- Complex Analysis using Mathematica