Re: Complex Analysis using Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg52632] Re: [mg52621] Complex Analysis using Mathematica
- From: Murray Eisenberg <murray at math.umass.edu>
- Date: Sun, 5 Dec 2004 02:08:09 -0500 (EST)
- Organization: Mathematics & Statistics, Univ. of Mass./Amherst
- References: <200412040908.EAA13455@smc.vnet.net>
- Reply-to: murray at math.umass.edu
- Sender: owner-wri-mathgroup at wolfram.com
Why not just the following? u[x_, y_] := ComplexExpand[Re[Sinh[x + I y]]] v[x_, y_] := ComplexExpand[Im[Sinh[x + I y]]] {u[x, y], v[x, y]} {Cos[y] Sinh[x], Cosh[x] Sin[y]} For related matters, you might want to take a look at notebook CartesianPolarForms.nb on the Files page at: http://www.math.umass.edu/Courses/Math_421 That includes examples of using the neat utility functions ReImExpand and ToCoordinates and ToComplex from David Park's Cardano2 application. Pratik Desai wrote: > Here we go again, > > I have to define a complex function > So I go through this procedure to define that the variables are really "real" > > TagSet[p, Im[p], 0]; > TagSet[a, Im[a], 0]; > TagSet[b, Im[b], 0]; > TagSet[p, Re[p], p]; > TagSet[a, Re[a], a]; > TagSet[b, Re[b], b]; > lamda = a + I*b > z = ComplexExpand[lamda*p] > x=Re[z] > y=Im[z] > TagSet[u, Im[u[x, y]], 0]; > TagSet[v, Im[v[x, y]], 0]; > TagSet[x, Re[x], x]; > TagSet[y, Re[y], y]; > TagSet[u, Re[u[x, y]], u[x, y]]; > TagSet[v, Re[v[x, y]], v[x, y]]; > > > Then I define my actual function > > u1 = TrigToExp[Sinh[z]] (*By this time I have realized that > Mathematica or for that matter most of the CAS work better with > exponentials when it comes to complex analysis*) > > u[x, y] = Re[u1] > v[x, y] = Im[u1] > > The problem I face is that the software is not able to identify x and y > as I have defined above. May be I am making a trivial mistake. Please > advise > > > > Thanks in advance > > Pratik Desai > > > -- Murray Eisenberg murray at math.umass.edu Mathematics & Statistics Dept. Lederle Graduate Research Tower phone 413 549-1020 (H) University of Massachusetts 413 545-2859 (W) 710 North Pleasant Street fax 413 545-1801 Amherst, MA 01003-9305
- References:
- Complex Analysis using Mathematica
- From: "Pratik Desai" <pdesai1@umbc.edu>
- Complex Analysis using Mathematica