Re: contour for polar coordinate
- To: mathgroup at smc.vnet.net
- Subject: [mg52670] Re: contour for polar coordinate
- From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
- Date: Tue, 7 Dec 2004 05:48:24 -0500 (EST)
- Organization: Uni Leipzig
- References: <cp3snh$983$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, ContourPlot[ Evaluate[f /. {r -> Sqrt[x^2 + y^2], phi -> ArcTan[x, y]}], {x, -5, 5}, {y, -5, 5}, PlotPoints -> 50, ColorFunction -> Hue] or gg = Graphics[ ContourPlot[Evaluate[f ], {r, 0.001, 5}, {phi, -Pi, Pi}, PlotPoints -> 50, ColorFunction -> Hue, DisplayFunction -> Identity] ] /. (h : Line | Polygon)[pnts_] :> h[#[[1]]*{Cos[#[[2]]], Sin[#[[2]]]} & /@ pnts]; Show[gg , DisplayFunction -> $DisplayFunction] Regards Jens "Tun Myint Aung" <TMA at nus.edu.sg> schrieb im Newsbeitrag news:cp3snh$983$1 at smc.vnet.net... > Hi, > > I am trying to plot a contour for a function which is in polar > coordinate. I have tried for a week already. But I still don't know how > to draw it. Anyone can help me? > > For example > > My function is > f = (0.2780543277145557 - 0.9275402582878466* > > BesselJ[0, 7.076718097009348*r] + 0.07256218841709995* > > BesselY[0, 7.076718097009348*r] - 0.2389342773790369* > > Log[r])Cos[phi] > > > > With Regards, > Tun Myint Aung (Graduate Student) > Civil Engineering Department > National University of Singapore > E1A 02-18 > E-mail: g0202015 at nus.edu.sg (or) tma at nus.edu.sg >