Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2004
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re : Partial fraction command

  • To: mathgroup at smc.vnet.net
  • Subject: [mg52682] Re : [mg52663] Partial fraction command
  • From: "Jaccard Florian" <Florian.Jaccard at he-arc.ch>
  • Date: Thu, 9 Dec 2004 20:22:36 -0500 (EST)
  • Sender: owner-wri-mathgroup at wolfram.com

You look after Apart :

In[1]:=
Apart[(8*s + 10)/((s + 1)*(s + 3)^2)]

Out[1]=
-(1/(2*(s + 3))) + 7/(s + 3)^2 + 1/(2*(s + 1))

Looks like you want to use the Inverse Laplace Transform?

In[3]:=
InverseLaplaceTransform[(8*s + 10)/((s + 1)*(s + 3)^2), s, t]

Out[3]=
((1/2)*(14*t + E^(2*t) - 1))/E^(3*t)

Regards
 
F.Jaccard


-----Message d'origine-----
De : Jack [mailto:ajack at remove.com] 
Envoyé : mardi, 7. décembre 2004 10:10
À : mathgroup at smc.vnet.net
Objet : [mg52663] Partial fraction command

Hello,

Is there any built-in command for partial fraction in Mathematica? eg

(8s + 10)/(s+1)(s+3)^2 = a1/(s+1) + a2/(s+3)^2 +a3/(s+3) to get
a1,a2,and a3.



  • Prev by Date: Re: Needed Grid lines in Implicit Plot
  • Next by Date: Re: finite domains
  • Previous by thread: Re: MMA 5.1 Integrals
  • Next by thread: [Splines] Defining piecewise functions over a variable number of intervals