Re: adding subset of interpolating function from a system of ODE
- To: mathgroup at smc.vnet.net
- Subject: [mg45864] Re: adding subset of interpolating function from a system of ODE
- From: bobhanlon at aol.com (Bob Hanlon)
- Date: Wed, 28 Jan 2004 05:19:02 -0500 (EST)
- References: <bv5e79$t28$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
solution=NDSolve[{ Derivative[1][x][t]==-y[t]-z[t], x[0]==-0.04, Derivative[1][y][t]==x[t]+0.425*y[t], y[0]==-0.3, Derivative[1][z][t]==2-(4-x[t])*z[t], z[0]==0.52}, {x[t],y[t],z[t]},{t,0,25}]; ParametricPlot3D[ Evaluate[{x[t],y[t],z[t]}/.solution], {t,0,25},PlotPoints->1000,PlotRange->All]; Plot[x[t]+y[t] /. solution, {t,0,25}]; ParametricPlot[{y[t], x[t]+z[t]} /. solution, {t, 0, 25}, PlotRange->All]; Bob Hanlon In article <bv5e79$t28$1 at smc.vnet.net>, sean_incali at yahoo.com (sean kim) wrote: << Please consider the lorenz system for example. In[2]:= solution=NDSolve[{Derivative[1][x][t]\[Equal]-y[t]-z[t],x[0]\[Equal]-0.04, Derivative[1][y][t]\[Equal]x[t]+0.425*y[t],y[0]\[Equal]-0.3, Derivative[1][z][t]\[Equal]2-(4-x[t])*z[t],z[0]\[Equal]0.52},{x[t], y[t],z[t]},{t,0,25}]; ParametricPlot3D[Evaluate[{x[t],y[t],z[t]}/.solution],{t,0,25}, PlotPoints -> 1000,PlotRange ->All]; above shows a parametric plot of x, y and z. but let's say for some reason I want to plot the following.. x+y vs time x+z vs y how do I achieve this? is this possible in mathematica?