elements of cultural strength from the von Bertalanffy standpoint

• To: mathgroup at smc.vnet.net
• Subject: [mg49436] elements of cultural strength from the von Bertalanffy standpoint
• From: Roger Bagula <tftn at earthlink.net>
• Date: Tue, 20 Jul 2004 07:53:26 -0400 (EDT)
• Sender: owner-wri-mathgroup at wolfram.com

```  From notes made in "General Systems Theory":

Elements of Cultural strength:
1) Mood ( economic climate/ Kondratieff-Mandelbrot cycles)
2) Resources ( Club of Rome "The Limits of Growth " simulations)
3) Population dynamics (Verhulst/ Lotka Volterra nonlinear differential
equations)
4) Other elements ( cultural competition)
A nonlinear equation like:

Csf'=Csf+w1*P(mood)+w2*P(resources)+w3*P(population)+w4*P(competition)

{w1,w2,w3,w4} are observed weights from statistics like the stock market,
oil and rare metal prices, census and wars.
The map represents a multidimensional chaotic equation
that isn't easy to solve.
Isaac Asimov pointed out that the course of such events could be
changed by one man's invention or discovery of a new
technology ( his Mule).

Using a Jacobian with a social structure matrix Det[M(i,j)]<=1
J=log(N)+3*log(detM)+log(1-K*detM/N)-->1
which gives:
N-K--> Exp(1)
The social structure matrix assumption as being unitary or below
is that cultures have a convex hull structure:
that they live for a time then die.
This assumption is pretty much what history tells us.
That cultures have cycles like the stock market...
and sometimes just collapse in a catastrophe.
The Club of Rome results are pretty much the same projection the
Petroleum  Geological predictions for future oil reserves
and were never a surprise to anybody.
What math says and what happens is usually different, but
many times because we heed the math.

This is an example Mathematica notebook showing a solution of a
type of 4d system. x is taken as population like
and w as resource like: y,z are taken as mood and
competition variables.
I further added a cultural strength variable in another version
and it worked as well.
This set is not a "serious" model, but
one that I thought might calculate from my
previous 4d chaos work.
It is to show how such a model can be set up and solved using Mathematica.
Respectfully, Roger L. Bagula
619-5610814 :
URL : http://victorian.fortunecity.com/carmelita/435/

Mathematica notebook:
(***********************************************************************

Mathematica-Compatible Notebook

This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook
starts with the line of stars above.

To get the notebook into a Mathematica-compatible application, do one of
the following:

* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the application;

* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.

applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info at wolfram.com
phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from
Wolfram Research.
***********************************************************************)

(*CacheID: 232*)

(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[      6214,        235]*)
(*NotebookOutlinePosition[      7276,        271]*)
(*  CellTagsIndexPosition[      7205,        265]*)
(*WindowFrame->Normal*)

Notebook[{
Cell[BoxData[
\(Clear[a, b, c, d, e, f, g, h, i, j, k, l, n, m, o, p, M1, K1, J1, a0,
b0, c0, d0, x, xx, y, yy, z, zz, w, ww]\)], "Input"],

Cell[BoxData[
\( (*\
allometric\ psychohistory\ model\ by\ R . \ B . \ Bagula\ 19\ July\
2004  \[Copyright]\ ; based\ on\ von\ Bertalanffy' s\ ideas*) \)],
"Input"],

Cell[BoxData[
\( (*\ social\ structure\ matrix*) \)], "Input"],

Cell[BoxData[
\(\(M = {{a, b, c, d}, {e, f, g, h}, {i, j, k, l}, {n, m, o, p}};
\)\)],
"Input"],

Cell[BoxData[
\(\(N1 = Exp[1] - 1; \)\)], "Input"],

Cell[BoxData[
\(\(K1 = 1; \)\)], "Input"],

Cell[BoxData[
\( (*\ fish\ weight\ allometric\ social\ structure\ Matrix\ *) \)],
"Input"],

Cell[BoxData[
\(\(J1 = N1*MatrixPower[M, 3] - K1*MatrixPower[M, 2]; \)\)], "Input"],

Cell[BoxData[
\( (*\ test\ values\ for\ matrix*) \)], "Input"],

Cell[BoxData[
\(\(a = \(-1\) + 2*w[t] - 0.744861766619744258/x[t]; \)\)], "Input"],

Cell[BoxData[
\(\(f = \(-1\) + 2*w[t]; \)\)], "Input"],

Cell[BoxData[
\(\(k = \(-1\) + 2*w[t]; \)\)], "Input"],

Cell[BoxData[
\(\(p = \(-1\) + w[t] - 0.122561166876653637/w[t]; \)\)], "Input"],

Cell[BoxData[
\(\(l = 0; \)\)], "Input"],

Cell[BoxData[
\(\(h = 0; \)\)], "Input"],

Cell[BoxData[
\(\(n = x[t]; \)\)], "Input"],

Cell[BoxData[
\(\(m = y[t]; \)\)], "Input"],

Cell[BoxData[
\(\(o = z[t]; \)\)], "Input"],

Cell[BoxData[
\(\(e = \(-25\); \)\)], "Input"],

Cell[BoxData[
\(\(g = 0; \)\)], "Input"],

Cell[BoxData[
\(\(i = 0; \)\)], "Input"],

Cell[BoxData[
\(\(j = 0; \)\)], "Input"],

Cell[BoxData[
\(\(b = 25; \)\)], "Input"],

Cell[BoxData[
\(\(c = 0; \)\)], "Input"],

Cell[BoxData[
\(\(d = 0; \)\)], "Input"],

Cell[BoxData[
\( (*\ differential\ vector\ calculated*) \)], "Input"],

Cell[BoxData[
\(\(out = J1 . {x[t], y[t], z[t], w[t]}; \)\)], "Input"],

Cell[BoxData[
\(\(xx[t_] = out[\([1]\)]; \)\)], "Input"],

Cell[BoxData[
\(\(yy[t_] = out[\([2]\)]; \)\)], "Input"],

Cell[BoxData[
\(\(zz[t_] = out[\([3]\)]; \)\)], "Input"],

Cell[BoxData[
\(\(ww[t_] = out[\([4]\)]; \)\)], "Input"],

Cell[BoxData[
\( (*\ intitial\ conditions\ set\ *) \)], "Input"],

Cell[BoxData[
\(\(d0 = \(-0.744861766619744258\); \)\)], "Input"],

Cell[BoxData[
\(\(\t\(c0 = 1; \)\)\)], "Input"],

Cell[BoxData[
\(\(\t\(b0 = \(-1\); \)\)\)], "Input"],

Cell[BoxData[
\(\(\t\(a0 = \(-0.122561166876653637\); \)\)\)], "Input"],

Cell[BoxData[
\( (*\ calculation\ of\ differential\ equations*) \)], "Input"],

Cell[CellGroupData[{

Cell["\<\
xyzw=NDSolve[ { x'[t]==xx[t],
y'[t] == yy[t],
z'[t] == zz[t],
w'[t] == ww[t],
x[0] ==b0, y[0] == c0, z[0]==d0,w[0] == a0},
{x, y, z, w}, {t, 0, 5}, MaxSteps->100000 ]\
\>", "Input",
CellTags->"S3.9.7"],

Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"x", "\[Rule]",
TagBox[\(InterpolatingFunction[{{0.`, 5.`}}, "<>"]\),
False,
Editable->False]}], ",",
RowBox[{"y", "\[Rule]",
TagBox[\(InterpolatingFunction[{{0.`, 5.`}}, "<>"]\),
False,
Editable->False]}], ",",
RowBox[{"z", "\[Rule]",
TagBox[\(InterpolatingFunction[{{0.`, 5.`}}, "<>"]\),
False,
Editable->False]}], ",",
RowBox[{"w", "\[Rule]",
TagBox[\(InterpolatingFunction[{{0.`, 5.`}}, "<>"]\),
False,
Editable->False]}]}], "}"}], "}"}]], "Output"]
}, Open  ]],

Cell[BoxData[
\( (*\ 1  st\ 3  d\ view*) \)], "Input"],

Cell[CellGroupData[{

Cell["\<\
gz=ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} /. xyzw],
{t, 0, 5}, PlotPoints -> 100000,PlotRange->All]\
\>",
"Input",
CellTags->"S3.9.7"],

Cell[BoxData[
TagBox[\(\[SkeletonIndicator]  Graphics3D  \[SkeletonIndicator]\),
False,
Editable->False]], "Output"]
}, Open  ]],

Cell[BoxData[
\( (*\ second\ 3  d\ view*) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
\(gw =
ParametricPlot3D[Evaluate[{x[t], \ y[t], \ w[t]}\  /. \ xyzw], \n
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {t, \ 0, \ 5}, \
PlotPoints\  -> \ 100000, PlotRange -> All]\)], "Input"],

Cell[BoxData[
TagBox[\(\[SkeletonIndicator]  Graphics3D  \[SkeletonIndicator]\),
False,
Editable->False]], "Output"]
}, Open  ]]
},
FrontEndVersion->"Macintosh 3.0",
ScreenRectangle->{{0, 1920}, {0, 1060}},
ScreenStyleEnvironment->"Condensed",
WindowSize->{1211, 1037},
WindowMargins->{{168, Automatic}, {-7, Automatic}},
MacintoshSystemPageSetup->"\<\
00/0001804P000000_@2@?olonh35@9B7`<5:@?l0040004/0B`000003509H04/
02d5X5k/02H20@4101P00BL?00400@0000000000000000010000000000000000
0000000000000002000000@210D00000\>"
]

(***********************************************************************
Cached data follows.  If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of
the file.  The cache data will then be recreated when you save this file
from within Mathematica.
***********************************************************************)

(*CellTagsOutline
CellTagsIndex->{
"S3.9.7"->{
Cell[4312, 168, 261, 8, 83, "Input",
CellTags->"S3.9.7"],
Cell[5411, 205, 180, 5, 31, "Input",
CellTags->"S3.9.7"]}
}
*)

(*CellTagsIndex
CellTagsIndex->{
{"S3.9.7", 7043, 256}
}
*)

(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 149, 2, 18, "Input"],
Cell[1861, 53, 187, 4, 18, "Input"],
Cell[2051, 59, 66, 1, 18, "Input"],
Cell[2120, 62, 102, 2, 18, "Input"],
Cell[2225, 66, 54, 1, 18, "Input"],
Cell[2282, 69, 45, 1, 18, "Input"],
Cell[2330, 72, 97, 2, 18, "Input"],
Cell[2430, 76, 87, 1, 18, "Input"],
Cell[2520, 79, 66, 1, 18, "Input"],
Cell[2589, 82, 86, 1, 18, "Input"],
Cell[2678, 85, 58, 1, 18, "Input"],
Cell[2739, 88, 58, 1, 18, "Input"],
Cell[2800, 91, 84, 1, 18, "Input"],
Cell[2887, 94, 44, 1, 18, "Input"],
Cell[2934, 97, 44, 1, 18, "Input"],
Cell[2981, 100, 47, 1, 18, "Input"],
Cell[3031, 103, 47, 1, 18, "Input"],
Cell[3081, 106, 47, 1, 18, "Input"],
Cell[3131, 109, 50, 1, 18, "Input"],
Cell[3184, 112, 44, 1, 18, "Input"],
Cell[3231, 115, 44, 1, 18, "Input"],
Cell[3278, 118, 44, 1, 18, "Input"],
Cell[3325, 121, 45, 1, 18, "Input"],
Cell[3373, 124, 44, 1, 18, "Input"],
Cell[3420, 127, 44, 1, 18, "Input"],
Cell[3467, 130, 73, 1, 18, "Input"],
Cell[3543, 133, 74, 1, 18, "Input"],
Cell[3620, 136, 60, 1, 18, "Input"],
Cell[3683, 139, 60, 1, 18, "Input"],
Cell[3746, 142, 60, 1, 18, "Input"],
Cell[3809, 145, 60, 1, 18, "Input"],
Cell[3872, 148, 68, 1, 18, "Input"],
Cell[3943, 151, 69, 1, 18, "Input"],
Cell[4015, 154, 51, 1, 18, "Input"],
Cell[4069, 157, 56, 1, 18, "Input"],
Cell[4128, 160, 75, 1, 18, "Input"],
Cell[4206, 163, 81, 1, 18, "Input"],

Cell[CellGroupData[{
Cell[4312, 168, 261, 8, 83, "Input",
CellTags->"S3.9.7"],
Cell[4576, 178, 737, 19, 32, "Output"]
}, Open  ]],
Cell[5328, 200, 58, 1, 18, "Input"],

Cell[CellGroupData[{
Cell[5411, 205, 180, 5, 31, "Input",
CellTags->"S3.9.7"],
Cell[5594, 212, 132, 3, 18, "Output"]
}, Open  ]],
Cell[5741, 218, 59, 1, 18, "Input"],

Cell[CellGroupData[{
Cell[5825, 223, 238, 4, 32, "Input"],
Cell[6066, 229, 132, 3, 18, "Output"]
}, Open  ]]
}
]
*)

(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)

--
Respectfully, Roger L. Bagula