Re: 3D Pascal's Triangle (Cone?)
- To: mathgroup at smc.vnet.net
- Subject: [mg49575] Re: 3D Pascal's Triangle (Cone?)
- From: "Roger L. Bagula" <rlbtftn at netscape.net>
- Date: Fri, 23 Jul 2004 06:01:47 -0400 (EDT)
- References: <200407211814.i6LIELN23030@proapp.mathforum.org> <cdnq13$l3v$1@smc.vnet.net>
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
typo: extra "}" in the cuboid: g=Flatten[Table[If Mod[Multinomial[x,y,x],2]==1,Cuboid[1.2*{x,y,-z}],{}],{x,0,15},{y.0,15},{z,0,15}] Show[Graphics3D[g]] Roger L. Bagula wrote: > There is and old Visualization in Mathematica that > gives a modulo 2 version of a Pascal's triangle. > It is a right angle version of a tetrahedral 3d Sierpiski triangle. > Here it is: ( copyright Mathematica): > > g=Flatten[Table[If > Mod[Multinomial[x,y,x],2]==1,Cuboid[1.2*{x,y,-z}}],{}],{x,0,15},{y.0,15},{z,0,15}] > Show[Graphics3D[g]] > > phil wrote: > >>Is there a three dimensional version of Pascal's >>triangle? If so, I suppose it would be a cone (?). >>Applications? >> >>phil >> > > > -- Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : URL : http://home.earthlink.net/~tftn URL : http://victorian.fortunecity.com/carmelita/435/
- Follow-Ups:
- Re: Re: 3D Pascal's Triangle (Cone?)
- From: DrBob <drbob@bigfoot.com>
- Re: Re: 3D Pascal's Triangle (Cone?)