3D Pascal's beta cube
- To: mathgroup at smc.vnet.net
- Subject: [mg49610] 3D Pascal's beta cube
- From: "Roger L. Bagula" <rlbtftn at netscape.net>
- Date: Sat, 24 Jul 2004 03:48:19 -0400 (EDT)
- References: <200407211814.i6LIELN23030@proapp.mathforum.org> <cdnq13$l3v$1@smc.vnet.net>
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
(* 64*64*64 CUBE OF xy,yz,zx beta triangle 3D *) (* BY R. L. BAGULA 23 July 2004©*) a=32; b1=Beta[Abs[a-Abs[a-x]],Abs[a-Abs[a-y]]] b2=Beta[Abs[a-Abs[a-y]],Abs[a-Abs[a-z]]] b3=Beta[Abs[a-Abs[a-x]],Abs[a-Abs[a-z]]] g=Flatten[Table[If[Mod[1/(b1*b2*b3),2]==1, Cuboid[0.5*{x,y,z}],{}], {x,0,2*a},{y,0,2*a},{z,0,2*a}]]; gg=Show[Graphics3D[g,Boxed->False,ViewPoint->{-3.059, 8.168, 2.221}]] Notebook available by request. Roger L. Bagula wrote: > There is and old Visualization in Mathematica that > gives a modulo 2 version of a Pascal's triangle. > It is a right angle version of a tetrahedral 3d Sierpiski triangle. > Here it is: ( copyright Mathematica): > > g=Flatten[Table[If > Mod[Multinomial[x,y,x],2]==1,Cuboid[1.2*{x,y,-z}}],{}],{x,0,15},{y.0,15},{z,0,15}] > Show[Graphics3D[g]] > > phil wrote: > >>Is there a three dimensional version of Pascal's >>triangle? If so, I suppose it would be a cone (?). >>Applications? >> >>phil >> > > > -- Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : URL : http://home.earthlink.net/~tftn URL : http://victorian.fortunecity.com/carmelita/435/
- Follow-Ups:
- Re: 3D Pascal's beta cube
- From: DrBob <drbob@bigfoot.com>
- Re: 3D Pascal's beta cube