Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2004
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Slow LinearSolve.

  • To: mathgroup at smc.vnet.net
  • Subject: [mg49657] Slow LinearSolve.
  • From: Aaron Fude <aaronfude at yahoo.com>
  • Date: Mon, 26 Jul 2004 04:28:54 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

 Hi,
 
 Within 24 hours and counting, Mathematica was not able to solve Ax = b for
 the following A and the following B. Another system does this in a matter of seconds.
 How do make Mathematica do the same? I use "LinearSolve[A, b]"
 
 A = {{1, -I, -1, I, 1, -I, -1, I, 1, -I, -1, I, 1}, {1, E^(((-5*I)/12)*Pi),
 E^(((-5*I)/6)*Pi),
 E^(((3*I)/4)*Pi), E^((I/3)*Pi), E^((-I/12)*Pi), -I, E^(((-11*I)/12)*Pi),
 E^(((2*I)/3)*Pi),
 E^((I/4)*Pi), E^((-I/6)*Pi), E^(((-7*I)/12)*Pi), -1},
 {1, E^((-I/3)*Pi), E^(((-2*I)/3)*Pi), -1, E^(((2*I)/3)*Pi), E^((I/3)*Pi), 1,
 E^((-I/3)*Pi),
 E^(((-2*I)/3)*Pi), -1, E^(((2*I)/3)*Pi), E^((I/3)*Pi), 1},
 {1, E^((-I/4)*Pi), -I, E^(((-3*I)/4)*Pi), -1, E^(((3*I)/4)*Pi), I,
 E^((I/4)*Pi), 1,
 E^((-I/4)*Pi), -I, E^(((-3*I)/4)*Pi), -1}, {1, E^((-I/6)*Pi),
 E^((-I/3)*Pi), -I,
 E^(((-2*I)/3)*Pi), E^(((-5*I)/6)*Pi), -1, E^(((5*I)/6)*Pi),
 E^(((2*I)/3)*Pi), I,
 E^((I/3)*Pi), E^((I/6)*Pi), 1}, {1, E^((-I/12)*Pi), E^((-I/6)*Pi),
 E^((-I/4)*Pi),
 E^((-I/3)*Pi), E^(((-5*I)/12)*Pi), -I, E^(((-7*I)/12)*Pi),
 E^(((-2*I)/3)*Pi),
 E^(((-3*I)/4)*Pi), E^(((-5*I)/6)*Pi), E^(((-11*I)/12)*Pi), -1},
 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, E^((I/12)*Pi), E^((I/6)*Pi),
 E^((I/4)*Pi),
 E^((I/3)*Pi), E^(((5*I)/12)*Pi), I, E^(((7*I)/12)*Pi), E^(((2*I)/3)*Pi),
 E^(((3*I)/4)*Pi),
 E^(((5*I)/6)*Pi), E^(((11*I)/12)*Pi), -1}, {1, E^((I/6)*Pi), E^((I/3)*Pi),
 I,
 E^(((2*I)/3)*Pi), E^(((5*I)/6)*Pi), -1, E^(((-5*I)/6)*Pi),
 E^(((-2*I)/3)*Pi), -I,
 E^((-I/3)*Pi), E^((-I/6)*Pi), 1}, {1, E^((I/4)*Pi), I, E^(((3*I)/4)*Pi), -1,
 E^(((-3*I)/4)*Pi), -I, E^((-I/4)*Pi), 1, E^((I/4)*Pi), I,
 E^(((3*I)/4)*Pi), -1},
 {1, E^((I/3)*Pi), E^(((2*I)/3)*Pi), -1, E^(((-2*I)/3)*Pi), E^((-I/3)*Pi), 1,
 E^((I/3)*Pi),
 E^(((2*I)/3)*Pi), -1, E^(((-2*I)/3)*Pi), E^((-I/3)*Pi), 1},
 {1, E^(((5*I)/12)*Pi), E^(((5*I)/6)*Pi), E^(((-3*I)/4)*Pi), E^((-I/3)*Pi),
 E^((I/12)*Pi), I,
 E^(((11*I)/12)*Pi), E^(((-2*I)/3)*Pi), E^((-I/4)*Pi), E^((I/6)*Pi),
 E^(((7*I)/12)*Pi), -1},
 {1, I, -1, -I, 1, I, -1, -I, 1, I, -1, -I, 1}}
 
 b = {0, (-2*I)/5, 0, (-2*I)/3, 0, -2*I, Pi, 2*I, 0, (2*I)/3, 0, (2*I)/5, 0}
 


  • Prev by Date: Slow LinearSolve.
  • Next by Date: Fibonacci[1,000,000,000] contains 208,987,640 decimal digits (was: Fibonachi[5,000,000] contains 1044938 decimal digits)
  • Previous by thread: Re: Slow LinearSolve.
  • Next by thread: Re: Slow LinearSolve.