Re: Slow LinearSolve.
- To: mathgroup at smc.vnet.net
- Subject: [mg49675] Re: [mg49657] Slow LinearSolve.
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Tue, 27 Jul 2004 07:00:59 -0400 (EDT)
- References: <200407260802.EAA08533@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Aaron Fude wrote: > Hi, > > Within 24 hours and counting, Mathematica was not able to solve Ax = b for > the following A and the following B. Another system does this in a matter of seconds. > How do make Mathematica do the same? I use "LinearSolve[A, b]" > > A = {{1, -I, -1, I, 1, -I, -1, I, 1, -I, -1, I, 1}, {1, E^(((-5*I)/12)*Pi), > E^(((-5*I)/6)*Pi), > E^(((3*I)/4)*Pi), E^((I/3)*Pi), E^((-I/12)*Pi), -I, E^(((-11*I)/12)*Pi), > E^(((2*I)/3)*Pi), > E^((I/4)*Pi), E^((-I/6)*Pi), E^(((-7*I)/12)*Pi), -1}, > {1, E^((-I/3)*Pi), E^(((-2*I)/3)*Pi), -1, E^(((2*I)/3)*Pi), E^((I/3)*Pi), 1, > E^((-I/3)*Pi), > E^(((-2*I)/3)*Pi), -1, E^(((2*I)/3)*Pi), E^((I/3)*Pi), 1}, > {1, E^((-I/4)*Pi), -I, E^(((-3*I)/4)*Pi), -1, E^(((3*I)/4)*Pi), I, > E^((I/4)*Pi), 1, > E^((-I/4)*Pi), -I, E^(((-3*I)/4)*Pi), -1}, {1, E^((-I/6)*Pi), > E^((-I/3)*Pi), -I, > E^(((-2*I)/3)*Pi), E^(((-5*I)/6)*Pi), -1, E^(((5*I)/6)*Pi), > E^(((2*I)/3)*Pi), I, > E^((I/3)*Pi), E^((I/6)*Pi), 1}, {1, E^((-I/12)*Pi), E^((-I/6)*Pi), > E^((-I/4)*Pi), > E^((-I/3)*Pi), E^(((-5*I)/12)*Pi), -I, E^(((-7*I)/12)*Pi), > E^(((-2*I)/3)*Pi), > E^(((-3*I)/4)*Pi), E^(((-5*I)/6)*Pi), E^(((-11*I)/12)*Pi), -1}, > {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, E^((I/12)*Pi), E^((I/6)*Pi), > E^((I/4)*Pi), > E^((I/3)*Pi), E^(((5*I)/12)*Pi), I, E^(((7*I)/12)*Pi), E^(((2*I)/3)*Pi), > E^(((3*I)/4)*Pi), > E^(((5*I)/6)*Pi), E^(((11*I)/12)*Pi), -1}, {1, E^((I/6)*Pi), E^((I/3)*Pi), > I, > E^(((2*I)/3)*Pi), E^(((5*I)/6)*Pi), -1, E^(((-5*I)/6)*Pi), > E^(((-2*I)/3)*Pi), -I, > E^((-I/3)*Pi), E^((-I/6)*Pi), 1}, {1, E^((I/4)*Pi), I, E^(((3*I)/4)*Pi), -1, > E^(((-3*I)/4)*Pi), -I, E^((-I/4)*Pi), 1, E^((I/4)*Pi), I, > E^(((3*I)/4)*Pi), -1}, > {1, E^((I/3)*Pi), E^(((2*I)/3)*Pi), -1, E^(((-2*I)/3)*Pi), E^((-I/3)*Pi), 1, > E^((I/3)*Pi), > E^(((2*I)/3)*Pi), -1, E^(((-2*I)/3)*Pi), E^((-I/3)*Pi), 1}, > {1, E^(((5*I)/12)*Pi), E^(((5*I)/6)*Pi), E^(((-3*I)/4)*Pi), E^((-I/3)*Pi), > E^((I/12)*Pi), I, > E^(((11*I)/12)*Pi), E^(((-2*I)/3)*Pi), E^((-I/4)*Pi), E^((I/6)*Pi), > E^(((7*I)/12)*Pi), -1}, > {1, I, -1, -I, 1, I, -1, -I, 1, I, -1, -I, 1}} > > b = {0, (-2*I)/5, 0, (-2*I)/3, 0, -2*I, Pi, 2*I, 0, (2*I)/3, 0, (2*I)/5, 0} Try it as below. The result is large. Offhand I do not know whether it can or should simplify to a "nice" small form. Timing[ls = LinearSolve[A, b, Method->OneStepRowReduction];] Daniel Lichtblau Wolfram Research
- References:
- Slow LinearSolve.
- From: Aaron Fude <aaronfude@yahoo.com>
- Slow LinearSolve.