RE: Re: List of solution

• To: mathgroup at smc.vnet.net
• Subject: [mg47005] RE: [mg46990] Re: List of solution
• From: "Florian Jaccard" <florian.jaccard at eiaj.ch>
• Date: Sat, 20 Mar 2004 03:50:17 -0500 (EST)
• Sender: owner-wri-mathgroup at wolfram.com

```It is true...

But the Select[%, FreeQ[#, I] &] method doesn't do it better...

But you can use :

Reduce[x^3 - 10x + 1 == 0,x,Reals]

This shoes that the 3 solutions are Real...

So you can obtain the exact solutions like this :

Simplify[ComplexExpand //@ Solve[x^3 - 10x + 1 == 0, x]]

And if you want a automatic "real solve" function, you can for example make
this :

mySolveReal[equ_, var_] :=
DeleteCases[Simplify[
ComplexExpand //@ Solve[equ,
var]], {var -> xx_} /;
Im[xx] != 0]

and try on a few examples... It works fine on your example !

mySolveReal[x^3-10x+1==0,x]

mySolveReal[x^2-x-10==0,x]

mySolveReal[x^2-x+10==0,x]

Meilleures salutations

Florian Jaccard

-----Message d'origine-----
De : astanoff [mailto:astanoff at yahoo.fr]
Envoyé : ven., 19. mars 2004 07:36
À : mathgroup at smc.vnet.net
Objet : [mg46990] Re: List of solution

Florian Jaccard wrote:

> Hello !

> C'est très simple :

> In[4]:=
> liste = {{x -> 0, y -> 0}, {x -> 1, y -> 0},
>    {x -> I, y -> 1 + 2*I}}

> Out[4]=
> {{x -> 0, y -> 0}, {x -> 1, y -> 0},
>   {x -> I, y -> 1 + 2*I}}

> In[5]:=
> DeleteCases[liste, {x -> xx_, y -> yy_} /;
>    Im[xx] != 0 || Im[yy] != 0]

> Out[5]=
> {{x -> 0, y -> 0}, {x -> 1, y -> 0}}

The case with 3 real roots Solve[x^3 - 10x + 1 == 0] doesn't seem to work
fine...

--
0% de pub! Que du bonheur et des vrais adhérents !
Vous aussi inscrivez-vous sans plus tarder!!
Message posté à partir de http://www.gyptis.org, BBS actif depuis 1995.

```

• Prev by Date: Re: List of solution
• Next by Date: Solution sketch sought for User Input (beginner's question)
• Previous by thread: Re: List of solution