Re: Problem with function
- To: mathgroup at smc.vnet.net
- Subject: [mg48318] Re: [mg48306] Problem with function
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 24 May 2004 00:45:12 -0400 (EDT)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
I assume that the function is intended to be zero outside of the defined region. Then using UnitStep to define g[t] g[t_] := t*UnitStep[t]+3(1-t)/2*UnitStep[t-1]-(3-t)/2*UnitStep[t-3]; Plot[g[t], {t,-1,4}, PlotRange->All]; Simplify[g[t], t<0] 0 Simplify[g[t], 0<=t<1] t Simplify[g[t], 1<=t<3]//Expand//N 1.5 - 0.5*t Simplify[g[t], 3<=t] 0 Taking the inverse transform of the Fourier transform will provide an equivalent but simpler expression for g[t] g2[t_] := Evaluate[ InverseFourierTransform[ FourierTransform[g[t], t, w],w,t]]; g2[t] (1/4)*((t - 3)*Sign[t - 3] - 3*(t - 1)*Sign[t - 1] + 2*t*Sign[t]) Plot[g2[t],{t,-1,4}, PlotRange->All]; Simplify[g2[t], t<0] 0 FullSimplify[g2[t], 0<=t<1] t FullSimplify[g2[t], 1<=t<3]//Expand//N 1.5 - 0.5*t FullSimplify[g2[t], 3<=t] 0 The Fourier transform is then FourierTransform[g2[t], t, w]//InputForm -((-1 + E^(I*w))^2*(2 + E^(I*w)))/(2*Sqrt[2*Pi]*w^2) InverseFourierTransform[%,w,t]==g2[t] True Bob Hanlon > > From: "DJkapi" <djkapi at poczta.onet.pl> To: mathgroup at smc.vnet.net > Date: 2004/05/23 Sun AM 06:15:34 EDT > To: mathgroup at smc.vnet.net > Subject: [mg48318] [mg48306] Problem with function > > How to compute in Mathematica fourier transform of function: > > t ,0=< t =<1 > g(t)= > 1.5-0.5t , 1< t =<3 > > to tell the truth i dont even know how to make Mathematica print that > function. > > Regards, > DJKapi > > > Bob Hanlon Chantilly, VA