Re: how can I solve a function Erfc
- To: mathgroup at smc.vnet.net
- Subject: [mg48445] Re: how can I solve a function Erfc
- From: "David W. Cantrell" <DWCantrell at sigmaxi.org>
- Date: Sun, 30 May 2004 06:12:06 -0400 (EDT)
- References: <c99d7f$k3b$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
"Florian Jaccard" <florian.jaccard at eiaj.ch> wrote: [snip] > In[9]:= L/(4*(Dg*t)^(1/2)) == InverseErfc[0.9] > > In[10]:= Solve[{%, Dg == 5*10^5}, t] My question now is: Since [2] (using 0.9) works, why does [1] (using 9/10 instead) fail? In[1]:= Solve[L/(4*(Dg*t)^(1/2)) == InverseErfc[9/10], t] Out[1]= {} In[2]:= Solve[L/(4*(Dg*t)^(1/2)) == InverseErfc[0.9], t] Out[2]= {{t -> (7.916014709627096*L^2)/Dg}} Surely [1] indicates a bug of some sort. David Cantrell > -----Message d'origine----- > De : aude [mailto:montgermont.aude at ec-lille.fr] > Envoyé : vendredi, 28. mai 2004 06:50 > À : mathgroup at smc.vnet.net > Objet : how can I solve a function Erfc > > Hi, > > I have to solve this function: > > Erfc[L/(4*(Dg*t)^(1/2))]= 0.9 > > Dg is constant. > > Dg=5*10^5 > > I want to plot t as a function of L.