Re: bimodal ditribution form counting signs of Pi digits differences
- To: mathgroup at smc.vnet.net
- Subject: [mg51773] Re: bimodal ditribution form counting signs of Pi digits differences
- From: Roger Bagula <tftn at earthlink.net>
- Date: Mon, 1 Nov 2004 02:53:28 -0500 (EST)
- References: <clst68$3nf$1@smc.vnet.net>
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
A second crack at a null hypothesis using an independent pseudorandom generator. Results from this generator are more variable than the Mathematica built in as you can change both the seed start number and the irrational it is based on. It too gives a different result than the Pi digits. Mathematica code: Clear[r,s,a,c1,d1] s=5 (*Pseudorandom number algorithm from Forcasting on Your Microcomuter,nickell, tab books, 1983*) SeedRandom[123] r[n_Integer]:=r[n]=Mod[(E+r[n-1])^s,1] r[0]=Random[] digits =50000 a=Table[Mod[Floor[10*r[n]],10],{n,1,digits}]; c1=Drop[FoldList[Plus,0,Sign[Drop[a,1]-Drop[a,-1]]],1]; ListPlot[c1,PlotJoined->True]; (* Rowe Count*) d1=Flatten@{0,Length/@Split[Sort@c1], 0} ListPlot[d1,PlotJoined->True]; Roger Bagula wrote: >This program is real slow on my machine. >Show a lean toward positive differences that is "slight" at 2000 digits. > >Digits=2000 >$MaxExtraPrecision = Digits >(* Sum of the sign of the differences between the first 2000 digits of Pi*) >f[m_]=Sum[Sign[Floor[Mod[10^(n+1)*Pi,10]]-Floor[Mod[10^n*Pi,10]]],{n,0,m}] >a=Table[{n,f[n]},{n,0,Digits-1}]; >ListPlot[a,PlotJoined->True] >b=Table[a[[n]][[2]],{n,1,Dimensions[a][[1]]}]; >(* distribution of the noise that results*) >c=Table[Count[b,m],{m,-12,12}] >ListPlot[c,PlotJoined->True] > >Respectfully, Roger L. Bagula >tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : >alternative email: rlbtftn at netscape.net >URL : http://home.earthlink.net/~tftn > > > -- Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn