Re: bimodal ditribution form counting signs of Pi digits differences
- To: mathgroup at smc.vnet.net
- Subject: [mg51770] Re: bimodal ditribution form counting signs of Pi digits differences
- From: Roger Bagula <tftn at earthlink.net>
- Date: Mon, 1 Nov 2004 02:53:15 -0500 (EST)
- References: <clst68$3nf$1@smc.vnet.net>
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
I did it to the maximum my version/ machine lets me using the method I understood best. The two lists of digits are not the same( Pi digits seem to vary more than the Random[Integer,{0.9}] do at this level). I'm sure somebody with a later version 5.0 and a faster machine can do better, but it still appears that Pi is a better pseudorandom than the built in, I think ot at least "different" in kind. Mathematica code I used: Clear[rdpi,c1,c2,Digits,d1,d2,g] Digits=50000;rdpi=RealDigits[Pi,10,Digits][[1]] c1=Drop[FoldList[Plus,0,Sign[Drop[rdpi,1]-Drop[rdpi,-1]]],1]; ListPlot[c1,PlotJoined->True]; (* Rowe Count*) d1=Flatten@{0,Length/@Split[Sort@c1], 0 ListPlot[d1,PlotJoined->True]; SeedRandom[123]; Clear[rdpi] rdpi=Table[Random[Integer, {0, 9}], {n, 50000}]; c2=Drop[FoldList[Plus,0,Sign[Drop[rdpi,1]-Drop[rdpi,-1]]],1]; ListPlot[c2,PlotJoined->True]; d2=Flatten@{0,Length/@Split[Sort@c2], 0} ListPlot[d2,PlotJoined->True]; (Dimensions[d1][[1]]-Dimensions[d2][[1]])/2 Roger Bagula wrote: >This program is real slow on my machine. >Show a lean toward positive differences that is "slight" at 2000 digits. > >Digits=2000 >$MaxExtraPrecision = Digits >(* Sum of the sign of the differences between the first 2000 digits of Pi*) >f[m_]=Sum[Sign[Floor[Mod[10^(n+1)*Pi,10]]-Floor[Mod[10^n*Pi,10]]],{n,0,m}] >a=Table[{n,f[n]},{n,0,Digits-1}]; >ListPlot[a,PlotJoined->True] >b=Table[a[[n]][[2]],{n,1,Dimensions[a][[1]]}]; >(* distribution of the noise that results*) >c=Table[Count[b,m],{m,-12,12}] >ListPlot[c,PlotJoined->True] > >Respectfully, Roger L. Bagula >tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : >alternative email: rlbtftn at netscape.net >URL : http://home.earthlink.net/~tftn > > > -- Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn