Solve and Reduce
- To: mathgroup at smc.vnet.net
- Subject: [mg52128] Solve and Reduce
- From: "Carol Ting" <tingyife at msu.edu>
- Date: Thu, 11 Nov 2004 04:53:03 -0500 (EST)
- References: <200411100834.DAA10359@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hello list, I want to find q as a function of c, q(c), given the following equation: 2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q - 1104*c*q^2 - 1152*q^3 == 0 However, each of the following three methods gives different results. I check the Mathematica Book but still cannot figure out why there are such differences. Could someone please explain this to me? Thanks a lot! (1) Use "Reduce" In[5]:= q1[c_] = Reduce[{2500*c^2 - 25*c^3 +3500*c*q - 320*c^2*q -1104*c*q^2 -1152*q^3 == 0, c > 0,q > 0}, q] Out[5]= 0<c<=(5*(-109199 + 1497*Sqrt[5489]))/2744] &&q == Root[-2500*c^2 + 25*c^3 - 3500*c*#1 + 320*c^2*#1 + 1104*c*#1^2 + 1152*#1^3 & ,3] || (5*(-109199 + 1497*Sqrt[5489]))/2744 < c < 100 && q ==Root[-2500*c^2 + 25*c^3 -3500*c*#1 + 320*c^2*#1 + 1104*c*#1^2 + 1152*#1^3 & , 1] In[6]:= Plot[Root[-2500*c^2 + 25*c^3 - 3500*c*#1 + 320*c^2*#1 + 1104*c*#1^2 + 1152*#1^3 & ,1], {c, 0, 100}] Plot[Root[-2500*c^2 + 25*c^3 - 3500*c*#1 + 320*c^2*#1 + 1104*c*#1^2 + 1152*#1^3 & ,3], {c, 0, 100}] Out[6]= Graphics[] Out[7]= Graphics[] (2) Use "Solve" and Immediate assignment In[32]:= qdroot1[c_] = q /. Solve[2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q - 1104*c*q^2 - 1152*q^3 == 0,q][[1]] qdroot3[c_] = q /. Solve[2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q - 1104*c*q^2 - 1152*q^3 == 0,q][[3]] In[34]:= Plot[qiroot1[c], {c, 0, 100}] Out[34]= Graphics[] In[35]:= Plot[qiroot3[c], {c, 0, 100}] Out[35]= Graphics[] (3) Use "Solve" and delayed assignment In[28]:= qdroot1[c_] := q /. Solve[2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q - 1104*c*q^2 - 1152*q^3 == 0,q][[1]] qdroot3[c_] := q /. Solve[2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q - 1104*c*q^2 - 1152*q^3 == 0,q][[3]] In[30]:= Plot[qdroot1[c], {c, 0, 100}] Out[30]= Graphics[] In[31]:= Plot[qdroot3[c], {c, 0, 100}] Out[31]= Graphics[] Carol
- Follow-Ups:
- Re: Solve and Reduce
- From: DrBob <drbob@bigfoot.com>
- Re: Solve and Reduce