Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2004
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Solve and Reduce

  • To: mathgroup at smc.vnet.net
  • Subject: [mg52150] Re: [mg52128] Solve and Reduce
  • From: DrBob <drbob at bigfoot.com>
  • Date: Fri, 12 Nov 2004 02:14:09 -0500 (EST)
  • References: <200411100834.DAA10359@smc.vnet.net> <200411110953.EAA28876@smc.vnet.net>
  • Reply-to: drbob at bigfoot.com
  • Sender: owner-wri-mathgroup at wolfram.com

Possibly this is the function you need:

eq = 2500*c^2 - 25*c^3 + 3500*c*q -
      320*c^2*q - 1104*c*q^2 - 1152*q^3 == 0;
qroot[c_] = Which @@
     Cases[Reduce[{eq, c >
        0, q > 0}, q], And[a_, Equal[q, c_]] :> Sequence[a, c]]

Which[Inequality[0, Less, c,
    LessEqual,
    (5*(-109199 + 1497*
        Sqrt[5489]))/2744],
   Root[-2500*c^2 + 25*c^3 -
      3500*c*#1 + 320*c^2*#1 +
      1104*c*#1^2 + 1152*#1^3 & ,
    3],
   (5*(-109199 + 1497*
        Sqrt[5489]))/2744 < c <
    100, Root[-2500*c^2 +
      25*c^3 - 3500*c*#1 +
      320*c^2*#1 + 1104*c*#1^2 +
      1152*#1^3 & , 1]]

Plot[qroot@c, {c, 0, 100}]

Bobby

On Thu, 11 Nov 2004 04:53:03 -0500 (EST), Carol Ting <tingyife at msu.edu> wrote:

>
> Hello list,
>
> I want to find q as a function of c, q(c), given the following
> equation:
>
> 2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q - 1104*c*q^2 - 1152*q^3 == 0
>
> However, each of the following three methods gives different results.
> I check the Mathematica Book but still cannot figure out why there are
> such differences.  Could someone please explain this to me?  Thanks a
> lot!
>
> (1) Use "Reduce"
>
> In[5]:=
> q1[c_] = Reduce[{2500*c^2 - 25*c^3 +3500*c*q - 320*c^2*q -1104*c*q^2
> -1152*q^3 == 0, c > 0,q > 0}, q]
>
> Out[5]=
> 0<c<=(5*(-109199 + 1497*Sqrt[5489]))/2744] &&q == Root[-2500*c^2 +
> 25*c^3 - 3500*c*#1 + 320*c^2*#1 + 1104*c*#1^2 + 1152*#1^3 & ,3] ||
> (5*(-109199 + 1497*Sqrt[5489]))/2744 < c < 100 && q ==Root[-2500*c^2 +
> 25*c^3 -3500*c*#1 + 320*c^2*#1 + 1104*c*#1^2 + 1152*#1^3 & , 1]
>
> In[6]:=
> Plot[Root[-2500*c^2 + 25*c^3 - 3500*c*#1 + 320*c^2*#1 + 1104*c*#1^2 +
> 1152*#1^3 & ,1], {c, 0, 100}]
> Plot[Root[-2500*c^2 + 25*c^3 - 3500*c*#1 + 320*c^2*#1 + 1104*c*#1^2 +
> 1152*#1^3 & ,3], {c, 0, 100}]
>
> Out[6]=
> Graphics[]
>
> Out[7]=
> Graphics[]
>
>
> (2) Use "Solve" and Immediate assignment
>
> In[32]:=
> qdroot1[c_] = q /. Solve[2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q -
> 1104*c*q^2 - 1152*q^3 == 0,q][[1]]
> qdroot3[c_] = q /. Solve[2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q -
> 1104*c*q^2 - 1152*q^3 == 0,q][[3]]
>
> In[34]:=
> Plot[qiroot1[c], {c, 0, 100}]
>
> Out[34]=
> Graphics[]
>
> In[35]:=
> Plot[qiroot3[c], {c, 0, 100}]
>
> Out[35]=
> Graphics[]
>
> (3) Use "Solve" and delayed assignment
>
> In[28]:=
> qdroot1[c_] := q /. Solve[2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q -
> 1104*c*q^2 - 1152*q^3 == 0,q][[1]]
> qdroot3[c_] := q /. Solve[2500*c^2 - 25*c^3 + 3500*c*q - 320*c^2*q -
> 1104*c*q^2 - 1152*q^3 == 0,q][[3]]
>
> In[30]:=
> Plot[qdroot1[c], {c, 0, 100}]
>
> Out[30]=
> Graphics[]
>
> In[31]:=
> Plot[qdroot3[c], {c, 0, 100}]
>
> Out[31]=
> Graphics[]
>
>
> Carol
>
>
>
>



-- 
DrBob at bigfoot.com
www.eclecticdreams.net


  • Prev by Date: Re: newbie question DSolve
  • Next by Date: Re: Re: Re: newbie question DSolve (revisited)
  • Previous by thread: Solve and Reduce
  • Next by thread: Re: Solve and Reduce