neat sums and pattered randomness
- To: mathgroup at smc.vnet.net
- Subject: [mg52236] neat sums and pattered randomness
- From: Roger Bagula <tftn at earthlink.net>
- Date: Mon, 15 Nov 2004 20:56:51 -0500 (EST)
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
In my fractal nonlinear IFS work I have used the rational pair (n/(n+1),1/(n+1)) to produce several new fractals. I know that it behaves very much in IFS like a nonlinear Cantor set. I made up Log[2] like sums alternating the pairs. The result is two irrational numbers that are summed to one. In the iterations based on these sum functions, I get patterned noise, but they still give a sorted slope of one. The result appears to be a paired noise pattern. (* a pair of sums from rational pairs (n/(1+n),1/(n+1))*) (* 1st=0.5224031171170045693773071024046350601893524864083449381053044765826974398161552455727317173783003561708929280568165560107397662133885113895083716587179298436322129249418632659176904330363338074199274*) (* 2nd=0.4775968828829954306226928975953649398106475135916550618946949011157747740696740400208629046092755848038901998264701338775987548167280850721475099467997575850060913783991812218340970953593189635761664*) (*1st+2nd=1*) f[n_]=If[Mod[n,2]==1,1/((n+1)*2^n),n/((n+1)*2^n)] digits=200 a=Table[N[f[n],digits],{n,1,digits}]; b=N[Apply[Plus,a],digits] Clear[f,a,b] f[n_]=If[Mod[n,2]==1,n/((n+1)*2^n),1/((n+1)*2^n)] a=Table[N[f[n],digits],{n,1,digits}]; b=N[Apply[Plus,a],digits] (* iterations based on these that have patterns in them*) x[n_]:=x[n]=Mod[x[n-1]*2+If[Mod[n,2]==1,1/(n+1),n/(n+1)],1] x[0]=0 Clear[a,b] a=Table[N[x[n],digits],{n,0,digits}]; ListPlot[a,PlotJoined->True,PlotRange->All] b=Sort[Table[N[x[n],digits],{n,0,digits}]]; ListPlot[b,PlotJoined->True,PlotRange->All] Fit[digits*b,{1,x},x] Clear[x] x[n_]:=x[n]=Mod[x[n-1]*2+If[Mod[n,2]==1,n/(n+1),1/(n+1)],1] x[0]=0 Clear[a,b] a=Table[N[x[n],digits],{n,0,digits}]; ListPlot[a,PlotJoined->True,PlotRange->All] b=Sort[Table[N[x[n],digits],{n,0,digits}]]; ListPlot[b,PlotJoined->True,PlotRange->All] Fit[digits*b,{1,x},x] Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn