Re: Oddities of Plot[]
- To: mathgroup at smc.vnet.net
- Subject: [mg51154] Re: [mg51123] Oddities of Plot[]
- From: DrBob <drbob at bigfoot.com>
- Date: Wed, 6 Oct 2004 04:34:45 -0400 (EDT)
- References: <200410050837.EAA08407@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
What you're missing is Evaluate. For instance, circle = Solve[r^2 == (x - h)^2 + (y - k)^2, y]; primitivelow = y /. circle[[1]] /. {r -> 1, h -> 0, k -> 0}; primitivehigh = y /. circle[[2]] /. {r -> 1, h -> 0, k -> 0}; primitive = {primitivehigh, primitivelow}; Plot[primitive // Evaluate, {x, 0, 1}] or circle = Solve[r^2 == (x - h)^2 + (y - k)^2, y]; primitive = y /. circle /. {r -> 1, h -> 0, k -> 0}; Plot[primitive // Evaluate, {x, 0, 1}] or circle = Solve[r^2 == (x - h)^2 + (y - k)^2, y]; Plot[y /. circle /. {r -> 1, h -> 0, k -> 0} // Evaluate, {x, 0, 1}] or circle = Solve[r^2 == (x - h)^2 + (y - k)^2, y]; Plot[Evaluate[y /. circle /. {r -> 1, h -> 0, k -> 0}], {x, 0, 1}] Bobby On Tue, 5 Oct 2004 04:37:12 -0400 (EDT), Roger Mason <rmason at esd.mun.ca> wrote: > Hello, > > Playing around in Mathematica 4 I came across this oddity: > > In[103]:= > circle = Solve[r^2 == (x - h)^2 + (y - k)^2, y] > Out[103]= > {{y -> k - Sqrt[-h^2 + r^2 + 2 h x - x^2]}, {y -> > k + Sqrt[-h^2 + r^2 + 2 h x - x^2]}} > > In[104]:= > primitivelow = y /. circle[[1]] /. {r -> 1 , h -> 0, k -> 0}; > primitivehigh = y /. circle[[2]] /. {r -> 1 , h -> 0, k -> 0}; > primitive = {primitivehigh, primitivelow} > Out[106]= > {1 - x^2, -1 - x^2} > > I don't see why this fails > > In[107]:= > Plot[primitive, {x, 0, 1}] > Plot::"plnr": "primitive is not a > machine-size real number at x = 4.166666666666666`*^-8." > > while this works > > In[108]:= > Plot[{1 - x^2, -1 - x^2}, {x, 0, 1}] > > Thanks, > > Roger Mason > > > > -- DrBob at bigfoot.com www.eclecticdreams.net
- References:
- Oddities of Plot[]
- From: Roger Mason <rmason@esd.mun.ca>
- Oddities of Plot[]