Re: Oddities of Plot[]
- To: mathgroup at smc.vnet.net
- Subject: [mg51139] Re: Oddities of Plot[]
- From: "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de>
- Date: Wed, 6 Oct 2004 04:34:12 -0400 (EDT)
- Organization: Uni Leipzig
- References: <cjto4h$8k2$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi, and Plot[Evaluate[primitive], {x, 0, 1}] does not help ?? Regards Jens "Roger Mason" <rmason at esd.mun.ca> schrieb im Newsbeitrag news:cjto4h$8k2$1 at smc.vnet.net... > Hello, > > Playing around in Mathematica 4 I came across this oddity: > > In[103]:= > circle = Solve[r^2 == (x - h)^2 + (y - k)^2, y] > Out[103]= > {{y -> k - Sqrt[-h^2 + r^2 + 2 h x - x^2]}, {y -> > k + Sqrt[-h^2 + r^2 + 2 h x - x^2]}} > > In[104]:= > primitivelow = y /. circle[[1]] /. {r -> 1 , h -> 0, k -> 0}; > primitivehigh = y /. circle[[2]] /. {r -> 1 , h -> 0, k -> 0}; > primitive = {primitivehigh, primitivelow} > Out[106]= > {1 - x^2, -1 - x^2} > > I don't see why this fails > > In[107]:= > Plot[primitive, {x, 0, 1}] > Plot::"plnr": "primitive is not a > machine-size real number at x = 4.166666666666666`*^-8." > > while this works > > In[108]:= > Plot[{1 - x^2, -1 - x^2}, {x, 0, 1}] > > Thanks, > > Roger Mason >