Re: Re: normal distribution random number generation
- To: mathgroup at smc.vnet.net
- Subject: [mg51256] Re: [mg51217] Re: normal distribution random number generation
- From: DrBob <drbob at bigfoot.com>
- Date: Sun, 10 Oct 2004 01:57:41 -0400 (EDT)
- References: <ck0ccp$o1u$1@smc.vnet.net> <200410090818.EAA09618@smc.vnet.net>
- Reply-to: drbob at bigfoot.com
- Sender: owner-wri-mathgroup at wolfram.com
I'm trying to combine that idea with Andrzej Kozlowski's recent fix for Random, and here's what I came up with: Unprotect[Random]; With[{m1 = 1/(2.^30 - 1.), m2 = 2^30 - 2}, randomSubstitutionFunction = Compile[{}, ((Random[Integer, m2] + .5)*m1 + Random[Integer, m2])*m1]; Random[] := randomSubstitutionFunction[] ] Random[Real, {a_Real, b_Real}] := a + Random[]*(b - a) Random[Real, b_Real] := Random[Real, {0, b}] Random[Real] := Random[Real, {0, 1}] Random[Complex, {a_Complex | a_Real | a_Integer, b_Complex | b_Real | \ b_Integer}] := a + Random[]*Re[(b - a)] + Random[]*Im[(b - a)]*I Random[Complex] := Random[Complex, {0, 1 + I}] Protect[Random]; I wanted NOT to use a Global (randomSubstitutionFunction) for the Compiled function, but I haven't stumbled on a way to manage it. Bobby On Sat, 9 Oct 2004 04:18:30 -0400 (EDT), Ray Koopman <koopman at sfu.ca> wrote: > Bill Rowe <readnewsciv at earthlink.net> wrote in message > news:<ck0ccp$o1u$1 at smc.vnet.net>... >> [...] >> you will have modified Random to use the Wolfram rule 30 cellular >> automaton and avoid the subtract with borrow algorithm. The main >> consequence of this is Random will now be considerably slower. >> [...] > > If time is an issue, you might want to consider generating integers > on 0...2^n-2 instead of 0...2^n-1. It's always much faster. And if > you're willing to spend a little of the time you've saved, you can > add a half and avoid ever having to worry about getting a zero. > > In[1]:= ToString[TableForm[Table[With[{m1 = 2^n - 1, m2 = 2^n - 2}, > {n, First[Timing[Do[Random[Integer,m1],{1*^6}]]]/.Second->1., > First[Timing[Do[Random[Integer,m2],{1*^6}]]]/.Second->1.}], > {n,2,30}],TableSpacing->{0,2}]] > > Out[1]= 2 1.96 1.42 > 3 2.12 1.5 > 4 2.38 1.61 > 5 2.66 1.73 > 6 2.91 1.86 > 7 3.16 2. > 8 3.41 2.1 > 9 3.68 2.19 > 10 3.92 2.35 > 11 4.21 2.56 > 12 4.5 2.68 > 13 4.79 2.82 > 14 5.07 3.02 > 15 5.34 3.08 > 16 5.56 3.26 > 17 5.84 3.38 > 18 6.09 3.53 > 19 6.33 3.64 > 20 6.57 3.77 > 21 6.84 3.87 > 22 7.1 4.03 > 23 7.33 4.2 > 24 7.63 4.25 > 25 7.89 4.37 > 26 8.15 4.56 > 27 8.4 4.61 > 28 8.56 4.79 > 29 8.95 4.95 > 30 9.16 5.07 > > In[2]:= ran1 = With[{m = 2.^-30, m1 = 2^30 - 1}, > Compile[{},(Random[Integer,m1]*m + Random[Integer,m1])*m]]; > > In[3]:= ran2 = With[{m1 = 1/(2.^30 - 1.), m2 = 2^30 - 2}, > Compile[{},(Random[Integer,m2]*m1 + Random[Integer,m2])*m1]]; > > In[4]:= ran2h = With[{m1 = 1/(2.^30 - 1.), m2 = 2^30 - 2}, > Compile[{},((Random[Integer,m2]+.5)*m1+Random[Integer,m2])*m1]]; > > In[5]:= First/@{Timing@Do[ran1[],{1*^5}],Timing@Do[ran2[],{1*^5}], > Timing@Do[ran2h[],{1*^5}]} > Out[5]= {2.03 Second, 1.05 Second, 1.08 Second} > > > > -- DrBob at bigfoot.com www.eclecticdreams.net
- References:
- Re: normal distribution random number generation
- From: koopman@sfu.ca (Ray Koopman)
- Re: normal distribution random number generation