Re: plotting groups of polynomial roots
- To: mathgroup at smc.vnet.net
- Subject: [mg51273] Re: plotting groups of polynomial roots
- From: Roger Bagula <tftn at earthlink.net>
- Date: Mon, 11 Oct 2004 01:25:32 -0400 (EDT)
- Organization: tftn/bmftg
- References: <ckajb5$m4j$1@smc.vnet.net>
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
I've used this same sort of root group finding program on the three general types of Pisot root Polynomials: 1) x^q*(x^2-x-1)+x^2-1==0 2) x^q-(x^(q+1)-1)/(x^2-1)=0 3) x^q-(x^(q-1)-1)/(x-1)=0 The type one is here given a disk to half plane transform that allows a greatter discrimation between the root values. (* root group of type one Pisot polynomial*) (* looked at as real part of a disk to half plane transform*) s[q_]=x^q*(x^2-x-1)+x^2-1 digits=21 a=Flatten[Table[x/. NSolve[s[n]==0,x],{n,1,digits}]]; Dimensions[a][[1]] b=Table[{Re[(a[[n]]-1)/(a[[n]]+1)],Im[(a[[n]]-1)/(a[[n]]+1)]},{n,1,Dimensions[a][[1]]}]; ListPlot[b,PlotRange->All] c=Table[Abs[Floor[Re[(a[[n]]-1)/(a[[n]]+1)]]],{n,1,Dimensions[a][[1]]}] ListPlot[c] {1,1,0,11,1,1,0,2,2,1,1,0,12,1,1,1,1,0,3,3,1,1,1,1,0,14,1,1,1,1,1,1,0,4,4,1,1, 1,1,1,1,0,16,1,1,1,1,1,1,1,1,0,5,5,1,1,1,1,1,1,1,1,0,18,1,1,1,1,1,1,1,1,1,1, 0,6,6,1,1,1,1,1,1,1,1,1,1,0,1,1,19,1,1,1,1,1,1,1,1,1,1,0,7,7,1,1,1,1,1,1,1, 1,1,1,1,1,0,1,1,21,1,1,1,1,1,1,1,1,1,1,1,1,0,8,8,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,0,2,2,22,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,9,9,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,0,2,2,24,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,10,10,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,0,2,2,25,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,11,11,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0} Roger Bagula wrote: >If you take the first and last term away from a binomial polynomial and >set the result equal to zero, >you get a number of strange roots. >This method allows you to plot such roots. >I didn't know it would work when I wrote it up, >but I plan to use it in the future >on some other polynomial root structures. > >(* root group where x^q+1=(x+1)^q: binomial expansion without x^q and 1*) >digits=21 >s[q_]=Sum[(q!/((q-k)!*k!))*x^(q-k),{k,1,q-1}] >ExpandAll[s[2]] >ExpandAll[s[3]] >a=Flatten[Table[x/. NSolve[s[n]==0,x],{n,2,digits}]]; >a0=Floor[Abs[a]] >Dimensions[a][[1]] >b=Table[{Re[a[[n]]],Im[a[[n]]]},{n,1,Dimensions[a][[1]]}]; >ListPlot[b,PlotRange->All] >Respectfully, Roger L. Bagula > >tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : >URL : http://home.earthlink.net/~tftn >URL : http://victorian.fortunecity.com/carmelita/435/ > > > -- Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : URL : http://home.earthlink.net/~tftn URL : http://victorian.fortunecity.com/carmelita/435/