Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2004
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

orthogonal 4d rotational matrices in Mathematica

  • To: mathgroup at smc.vnet.net
  • Subject: [mg51664] orthogonal 4d rotational matrices in Mathematica
  • From: Roger Bagula <tftn at earthlink.net>
  • Date: Wed, 27 Oct 2004 23:44:36 -0400 (EDT)
  • Reply-to: tftn at earthlink.net
  • Sender: owner-wri-mathgroup at wolfram.com

This was made up as an answer to a sci.math question but they will plug 
in to
Mathematica very nicely to do 4d rotations with six angles :

m1 = {{Cos[a], Sin[a], 0, 0}, {-Sin[a], Cos[a], 0, 0}, {0, 0, 1, 0}, {0, 
0, 0, 1}}

m2 = {{Cos[b], 0, -Sin[b], 0}, {0, 1, 0, 0}, {Sin[b], 0, Cos[b], 0}, {0, 
0, 0, 1}}

m3 = {{1, 0, 0, 1}, {0, Cos[c], Sin[c], 0}, {0, -Sin[c], Cos[c], 0}, {0, 
0, 0, 1}}

m4 = {{Cos[d], 0, 0, -Sin[d]}, {0, 1, 0, 0}, {0, 0, 1, 0}, {Sin[d], 0, 
0, Cos[d]}}

m5 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, Cos[e], -Sin[e]}, {0, 0, 
Sin[e], Cos[e]}}

m6 = {{1, 0, 0, 0}, {0, Cos[f], 0, Sin[f]}, {0, 0, 1, 0}, {0, -Sin[f], 
0, Cos[f]}}

Simplify[Det[m1]]

Simplify[Det[m2]]

Simplify[Det[m3]]

Simplify[Det[m4]]

Simplify[Det[m5]]

Simplify[Det[m6]]

M = m1 . m2 . m3 . m4 . m5 . m6

M={{Cos[a] Cos[b] Cos[d] + Cos[a] Cos[b] Sin[d], Cos[f] (Cos[c] Sin[a] + 
Cos[a] Sin[b] Sin[c]) - (Cos[e] (Cos[a] Cos[b] Cos[d] - Cos[a] Cos[b] 
Sin[d]) - (-Cos[a] Cos[c] Sin[b] + Sin[a] Sin[c]) Sin[e]) Sin[f],
 
   Cos[e] (-Cos[a] Cos[c] Sin[b] + Sin[a] Sin[c]) + (Cos[a] Cos[b] 
Cos[d] - Cos[a] Cos[b] Sin[d]) Sin[e],
 
   Cos[f] (Cos[e] (Cos[a] Cos[b] Cos[d] - Cos[a] Cos[b] Sin[d]) - 
(-Cos[a] Cos[c] Sin[b] + Sin[a] Sin[c]) Sin[e]) + (Cos[c] Sin[a] + 
Cos[a] Sin[b] Sin[c]) Sin[f]},
 
  {-Cos[b] Cos[d] Sin[a] - Cos[b] Sin[a] Sin[d], Cos[f] (Cos[a] Cos[c] - 
Sin[a] Sin[b] Sin[c]) - (Cos[e] (-Cos[b] Cos[d] Sin[a] + Cos[b] Sin[a] 
Sin[d]) - (Cos[c] Sin[a] Sin[b] + Cos[a] Sin[c]) Sin[e]) Sin[f],
 
   Cos[e] (Cos[c] Sin[a] Sin[b] + Cos[a] Sin[c]) + (-Cos[b] Cos[d] 
Sin[a] + Cos[b] Sin[a] Sin[d]) Sin[e],
 
   Cos[f] (Cos[e] (-Cos[b] Cos[d] Sin[a] + Cos[b] Sin[a] Sin[d]) - 
(Cos[c] Sin[a] Sin[b] + Cos[a] Sin[c]) Sin[e]) + (Cos[a] Cos[c] - Sin[a] 
Sin[b] Sin[c]) Sin[f]},
 
  {Cos[d] Sin[b] + Sin[b] Sin[d], -Cos[b] Cos[f] Sin[c] - (Cos[e] 
(Cos[d] Sin[b] - Sin[b] Sin[d]) - Cos[b] Cos[c] Sin[e]) Sin[f], Cos[b] 
Cos[c] Cos[e] + (Cos[d] Sin[b] - Sin[b] Sin[d]) Sin[e],
 
   Cos[f] (Cos[e] (Cos[d] Sin[b] - Sin[b] Sin[d]) - Cos[b] Cos[c] 
Sin[e]) - Cos[b] Sin[c] Sin[f]}, {Sin[d], -Cos[d] Cos[e] Sin[f], Cos[d] 
Sin[e], Cos[d] Cos[e] Cos[f]}}
  
Simplify[Det[M]]

Respectfully, Roger L. Bagula

tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :
alternative email: rlbtftn at netscape.net
URL :  http://home.earthlink.net/~tftn


  • Prev by Date: Re: Combining different colored 3-D Plots
  • Next by Date: Re: RandomReplacement
  • Previous by thread: Re : Re: 1) Global Real Space and 2) Histogram Y-axis
  • Next by thread: chiral Dirac six space