chiral Dirac six space
- To: mathgroup at smc.vnet.net
- Subject: [mg51663] chiral Dirac six space
- From: Roger Bagula <tftn at earthlink.net>
- Date: Wed, 27 Oct 2004 23:44:30 -0400 (EDT)
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
My Dirac six set up which I did when messing around with C^2 minimal surfaces. It is another (but complex matrix ) way to get an six space that is four space based in 4by4 matrices and this takes only four parameters! It's based on the matrices from Michael Creutz's "Quarks, Gluon and Lattices" that are determinant one ( Euclidean Diracs as opposed to Lorentzian Dirac's). It's a six space such that: x^2+y^2+z^2+t1^2+t2^2+t3^2=0 and the group is self congugate instead of complex congugate. basically the good thging about it is that it is null Ricci like. (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 11415, 455]*) (*NotebookOutlinePosition[ 12259, 482]*) (* CellTagsIndexPosition[ 12215, 478]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ \( (*\ six\ coordinate\ Dirac\ like\ algebra\ as\ squared\ projection\ of\ four \ space\ {s10, s20, s30, s40}*) \)], "Input"], Cell[BoxData[ \( (*\ dual\ coordinate\ \(complex : \ z1\) = s10 + I*s20\ ; \ z2 = s30 + I*s40*) \)], "Input"], Cell[BoxData[ \( (*\ {x, y, z} -> {Re[z1^2], I*r1^2, Im[z1^2]}*) \)], "Input"], Cell[BoxData[ \( (*{t1, t2, t3} -> \ {I*r2^2, Re[z2^2], Im[z2^2]*) \)], "Input"], Cell[BoxData[ \( (*\ developed\ as\ a\ dual\ complex\ Weirstrass\ minimal\ surface\ in\ four \ space\ to\ Dirac - Fermi\ six\ space*) \)], "Input"], Cell[BoxData[ \(\(\ (*x^2 + y^2 + z^2 + t1^2 + t2^2 + t3^2 == 0*) \)\)], "Input"], Cell[BoxData[ \( (*\ by\ Roger\ Bagula\ 3 April\ 2003 \[Copyright]*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(x = s10^2 - s20^2\)], "Input"], Cell[BoxData[ \(s10\^2 - s20\^2\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(y = I*\((s10^2 + s20^2)\)\)], "Input"], Cell[BoxData[ \(I\ \((s10\^2 + s20\^2)\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(z = 2*s10*s20\)], "Input"], Cell[BoxData[ \(2\ s10\ s20\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(t1 = I*\((s30^2 + s40^2)\)\)], "Input"], Cell[BoxData[ \(I\ \((s30\^2 + s40\^2)\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(t2 = s30^2 - s40^2\)], "Input"], Cell[BoxData[ \(s30\^2 - s40\^2\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(t3 = 2*s30*s40\)], "Input"], Cell[BoxData[ \(2\ s30\ s40\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(FullSimplify[x^2 + y^2 + z^2 + t1^2 + t2^2 + t3^2]\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell[BoxData[ \( (*\ s1, s2, s3, s4\ Dirac\ matrices*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(s0 = {{0, 0, 0, 1}, \n\t\t{0, 0, 1, 0}, \n\t\t{0, 1, 0, 0}, \n{1, 0, 0, 0}}\)], "Input"], Cell[BoxData[ \({{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s0 . s0\)], "Input"], Cell[BoxData[ \({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[%]\)], "Input"], Cell[BoxData[ \(1\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s1 = {{0, 0, 0, \(-I\)}, \n\t\t{0, 0, I, 0}, \n\t\t{0, \(-I\), 0, 0}, \n{I, 0, 0, 0}}\)], "Input"], Cell[BoxData[ \({{0, 0, 0, \(-I\)}, {0, 0, I, 0}, {0, \(-I\), 0, 0}, {I, 0, 0, 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s1 . s1\)], "Input"], Cell[BoxData[ \({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[%]\)], "Input"], Cell[BoxData[ \(1\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s2 = {{0, 0, 1, 0}, \n\t\t{0, 0, 0, \(-1\)}, \n\t\t{1, 0, 0, 0}, \n{0, \(-1\), 0, 0}}\)], "Input"], Cell[BoxData[ \({{0, 0, 1, 0}, {0, 0, 0, \(-1\)}, {1, 0, 0, 0}, {0, \(-1\), 0, 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s2 . s2\)], "Input"], Cell[BoxData[ \({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[%]\)], "Input"], Cell[BoxData[ \(1\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s3 = {{1, 0, 0, 0}, \n\t\t{0, 1, 0, 0}, \n\t\t{0, 0, \(-1\), 0}, \n{0, 0, 0, \(-1\)}}\)], "Input"], Cell[BoxData[ \({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, \(-1\), 0}, {0, 0, 0, \(-1\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s3 . s3\)], "Input"], Cell[BoxData[ \({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[%]\)], "Input"], Cell[BoxData[ \(1\)], "Output"] }, Open ]], Cell[BoxData[ \( (*\ Chiral\ Dirac\ matrix*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(s5 = s0 . s1 . s2 . s3\)], "Input"], Cell[BoxData[ \({{0, 0, \(-I\), 0}, {0, 0, 0, \(-I\)}, {I, 0, 0, 0}, {0, I, 0, 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s5 . s5\)], "Input"], Cell[BoxData[ \({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[%]\)], "Input"], Cell[BoxData[ \(1\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s6 = s3 . s2 . s1 . s0\)], "Input"], Cell[BoxData[ \({{0, 0, \(-I\), 0}, {0, 0, 0, \(-I\)}, {I, 0, 0, 0}, {0, I, 0, 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s6 . s6\)], "Input"], Cell[BoxData[ \({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[%]\)], "Input"], Cell[BoxData[ \(1\)], "Output"] }, Open ]], Cell[BoxData[ \( (*\ Identity\ Matrix*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(I4 = {{I, 0, 0, 0}, \n\t\t{0, I, 0, 0}, \n\t\t{0, 0, I, 0}, \n{0, 0, 0, I}}\)], "Input"], Cell[BoxData[ \({{I, 0, 0, 0}, {0, I, 0, 0}, {0, 0, I, 0}, {0, 0, 0, I}}\)], "Output"] }, Open ]], Cell[BoxData[ \( (*\ group\ definition\ as\ six\ space*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(g = x*s0 + y*s1 + z*s2 + t1*s3 + t2*s5 + t3*I4\)], "Input"], Cell[BoxData[ \({{2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\), 0, 2\ s10\ s20 - I\ \((s30\^2 - s40\^2)\), 2\ s10\^2}, {0, 2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\), \(-2\)\ s20\^2, \(-2\)\ s10\ s20 - I\ \((s30\^2 - s40\^2)\)}, { 2\ s10\ s20 + I\ \((s30\^2 - s40\^2)\), 2\ s10\^2, 2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\), 0}, {\(-2\)\ s20\^2, \(-2\)\ s10\ s20 + I\ \((s30\^2 - s40\^2)\), 0, 2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\)}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[g]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", GridBox[{ {\(2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\)\), "0", \(2\ s10\ s20 - I\ \((s30\^2 - s40\^2)\)\), \(2\ s10\^2\)}, {"0", \(2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\)\), \(\(-2\)\ s20\^2\), \(\(-2\)\ s10\ s20 - I\ \((s30\^2 - s40\^2)\)\)}, {\(2\ s10\ s20 + I\ \((s30\^2 - s40\^2)\)\), \(2\ s10\^2\), \(2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\)\), "0"}, {\(\(-2\)\ s20\^2\), \(\(-2\)\ s10\ s20 + I\ \((s30\^2 - s40\^2)\)\), "0", \(2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\)\)} }], ")"}], (MatrixForm[ #]&)]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[g]\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]], Cell[BoxData[ \( (*\ self\ congugate\ g = gstar*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(gstar = x*s0 + y*s1 + z*s2 + t1*s3 + t2*s5 + t3*I4\)], "Input"], Cell[BoxData[ \({{2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\), 0, 2\ s10\ s20 - I\ \((s30\^2 - s40\^2)\), 2\ s10\^2}, {0, 2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\), \(-2\)\ s20\^2, \(-2\)\ s10\ s20 - I\ \((s30\^2 - s40\^2)\)}, { 2\ s10\ s20 + I\ \((s30\^2 - s40\^2)\), 2\ s10\^2, 2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\), 0}, {\(-2\)\ s20\^2, \(-2\)\ s10\ s20 + I\ \((s30\^2 - s40\^2)\), 0, 2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\)}}\)], "Output"] }, Open ]], Cell[BoxData[ \( (*\ null\ matrix\ output\ of\ \(group : \ x^2 + y^2 + z^2 + t1^2 + t2^2 + t3^2 == 0\ with\ four\ space\ mapped\ to\ six\ space\)*) \)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(gg = FullSimplify[g . gstar]\)], "Input"], Cell[BoxData[ \({{\(-4\)\ s30\ s40\ \((s30 + s40)\)\^2, 0, 4\ s30\ s40\ \((2\ I\ s10\ s20 + s30\^2 - s40\^2)\), 8\ I\ s10\^2\ s30\ s40}, {0, \(-4\)\ s30\ s40\ \((s30 + s40)\)\^2, \(-8\)\ I\ s20\^2\ s30\ s40, 4\ s30\ s40\ \((\(-2\)\ I\ s10\ s20 + s30\^2 - s40\^2)\)}, { 4\ s30\ s40\ \((2\ I\ s10\ s20 - s30\^2 + s40\^2)\), 8\ I\ s10\^2\ s30\ s40, 4\ s30\ \((s30 - s40)\)\^2\ s40, 0}, { \(-8\)\ I\ s20\^2\ s30\ s40, \(-4\)\ s30\ s40\ \((2\ I\ s10\ s20 + s30\^2 - s40\^2)\), 0, 4\ s30\ \((s30 - s40)\)\^2\ s40}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[gg]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", GridBox[{ {\(\(-4\)\ s30\ s40\ \((s30 + s40)\)\^2\), "0", \(4\ s30\ s40\ \((2\ I\ s10\ s20 + s30\^2 - s40\^2)\)\), \(8\ I\ s10\^2\ s30\ s40\)}, {"0", \(\(-4\)\ s30\ s40\ \((s30 + s40)\)\^2\), \(\(-8\)\ I\ s20\^2\ s30\ s40\), \(4\ s30\ s40\ \((\(-2\)\ I\ s10\ s20 + s30\^2 - s40\^2)\)\)}, {\(4\ s30\ s40\ \((2\ I\ s10\ s20 - s30\^2 + s40\^2)\)\), \(8\ I\ s10\^2\ s30\ s40\), \(4\ s30\ \((s30 - s40)\)\^2\ s40\), "0"}, {\(\(-8\)\ I\ s20\^2\ s30\ s40\), \(\(-4\)\ s30\ s40\ \((2\ I\ s10\ s20 + s30\^2 - s40\^2)\)\), "0", \(4\ s30\ \((s30 - s40)\)\^2\ s40\)} }], ")"}], (MatrixForm[ #]&)]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[gg]\)], "Input"], Cell[BoxData[ \(0\)], "Output"] }, Open ]] }, FrontEndVersion->"Macintosh 3.0", ScreenRectangle->{{0, 1920}, {0, 1060}}, WindowSize->{1046, 819}, WindowMargins->{{102, Automatic}, {Automatic, 48}}, MacintoshSystemPageSetup->"\<\ 00/0001804P000000_@2@?olonh35@9B7`<5:@?l0040004/0B`000003509H04/ 02d5X5k/02H20@4101P00BL?00400@0000000000000000010000000000000000 0000000000000002000000@210D00000\>" ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1709, 49, 158, 3, 27, "Input"], Cell[1870, 54, 120, 2, 27, "Input"], Cell[1993, 58, 82, 1, 27, "Input"], Cell[2078, 61, 84, 1, 27, "Input"], Cell[2165, 64, 168, 3, 27, "Input"], Cell[2336, 69, 86, 1, 27, "Input"], Cell[2425, 72, 88, 1, 27, "Input"], Cell[CellGroupData[{ Cell[2538, 77, 50, 1, 27, "Input"], Cell[2591, 80, 49, 1, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2677, 86, 58, 1, 27, "Input"], Cell[2738, 89, 58, 1, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2833, 95, 46, 1, 27, "Input"], Cell[2882, 98, 45, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2964, 104, 59, 1, 27, "Input"], Cell[3026, 107, 58, 1, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3121, 113, 51, 1, 27, "Input"], Cell[3175, 116, 49, 1, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3261, 122, 47, 1, 27, "Input"], Cell[3311, 125, 45, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3393, 131, 83, 1, 27, "Input"], Cell[3479, 134, 35, 1, 26, "Output"] }, Open ]], Cell[3529, 138, 72, 1, 27, "Input"], Cell[CellGroupData[{ Cell[3626, 143, 117, 2, 75, "Input"], Cell[3746, 147, 90, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3873, 153, 40, 1, 27, "Input"], Cell[3916, 156, 90, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4043, 162, 39, 1, 27, "Input"], Cell[4085, 165, 35, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4157, 171, 127, 2, 75, "Input"], Cell[4287, 175, 103, 2, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4427, 182, 40, 1, 27, "Input"], Cell[4470, 185, 90, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4597, 191, 39, 1, 27, "Input"], Cell[4639, 194, 35, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4711, 200, 127, 2, 75, "Input"], Cell[4841, 204, 103, 2, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4981, 211, 40, 1, 27, "Input"], Cell[5024, 214, 90, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5151, 220, 39, 1, 27, "Input"], Cell[5193, 223, 35, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5265, 229, 127, 2, 75, "Input"], Cell[5395, 233, 103, 2, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5535, 240, 40, 1, 27, "Input"], Cell[5578, 243, 90, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5705, 249, 39, 1, 27, "Input"], Cell[5747, 252, 35, 1, 26, "Output"] }, Open ]], Cell[5797, 256, 62, 1, 27, "Input"], Cell[CellGroupData[{ Cell[5884, 261, 55, 1, 27, "Input"], Cell[5942, 264, 103, 2, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6082, 271, 40, 1, 27, "Input"], Cell[6125, 274, 90, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6252, 280, 39, 1, 27, "Input"], Cell[6294, 283, 35, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6366, 289, 55, 1, 27, "Input"], Cell[6424, 292, 103, 2, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6564, 299, 40, 1, 27, "Input"], Cell[6607, 302, 90, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[6734, 308, 39, 1, 27, "Input"], Cell[6776, 311, 35, 1, 26, "Output"] }, Open ]], Cell[6826, 315, 57, 1, 27, "Input"], Cell[CellGroupData[{ Cell[6908, 320, 117, 2, 75, "Input"], Cell[7028, 324, 90, 1, 26, "Output"] }, Open ]], Cell[7133, 328, 74, 1, 27, "Input"], Cell[CellGroupData[{ Cell[7232, 333, 79, 1, 27, "Input"], Cell[7314, 336, 513, 8, 45, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[7864, 349, 46, 1, 27, "Input"], Cell[7913, 352, 723, 14, 89, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[8673, 371, 39, 1, 27, "Input"], Cell[8715, 374, 35, 1, 26, "Output"] }, Open ]], Cell[8765, 378, 67, 1, 27, "Input"], Cell[CellGroupData[{ Cell[8857, 383, 83, 1, 27, "Input"], Cell[8943, 386, 513, 8, 45, "Output"] }, Open ]], Cell[9471, 397, 205, 5, 27, "Input"], Cell[CellGroupData[{ Cell[9701, 406, 61, 1, 27, "Input"], Cell[9765, 409, 605, 10, 79, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[10407, 424, 47, 1, 27, "Input"], Cell[10457, 427, 827, 16, 89, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[11321, 448, 40, 1, 27, "Input"], Cell[11364, 451, 35, 1, 26, "Output"] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************) Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn