chiral Dirac six space

• To: mathgroup at smc.vnet.net
• Subject: [mg51663] chiral Dirac six space
• From: Roger Bagula <tftn at earthlink.net>
• Date: Wed, 27 Oct 2004 23:44:30 -0400 (EDT)
• Sender: owner-wri-mathgroup at wolfram.com

```  My Dirac six set up which I did

when messing around with C^2 minimal surfaces.
It is another (but complex matrix ) way to get an
six space that is four space based in 4by4 matrices
and this takes only four parameters!
It's based on the matrices from Michael Creutz's
"Quarks, Gluon and Lattices" that are determinant one
( Euclidean Diracs as opposed to Lorentzian Dirac's).
It's a six space such that:
x^2+y^2+z^2+t1^2+t2^2+t3^2=0
and the group is self congugate instead of complex congugate.
basically the good thging about it is that it is null Ricci like.

(***********************************************************************

Mathematica-Compatible Notebook

This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook
starts with the line of stars above.

To get the notebook into a Mathematica-compatible application, do one of
the following:

* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the application;

* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.

applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info at wolfram.com
phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from
Wolfram Research.
***********************************************************************)

(*CacheID: 232*)

(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[     11415,        455]*)
(*NotebookOutlinePosition[     12259,        482]*)
(*  CellTagsIndexPosition[     12215,        478]*)
(*WindowFrame->Normal*)

Notebook[{
Cell[BoxData[
\( (*\
six\ coordinate\ Dirac\ like\ algebra\ as\ squared\ projection\
of\ four
\ space\ {s10, s20, s30, s40}*) \)], "Input"],

Cell[BoxData[
\( (*\ dual\ coordinate\ \(complex : \ z1\) = s10 + I*s20\ ; \
z2 = s30 + I*s40*) \)], "Input"],

Cell[BoxData[
\( (*\ {x, y, z} -> {Re[z1^2], I*r1^2, Im[z1^2]}*) \)], "Input"],

Cell[BoxData[
\( (*{t1, t2, t3} -> \ {I*r2^2, Re[z2^2], Im[z2^2]*) \)], "Input"],

Cell[BoxData[
\( (*\
developed\ as\ a\ dual\ complex\ Weirstrass\ minimal\ surface\ in\
four
\ space\ to\ Dirac - Fermi\ six\ space*) \)], "Input"],

Cell[BoxData[
\(\(\  (*x^2 + y^2 + z^2 + t1^2 + t2^2 + t3^2 == 0*) \)\)], "Input"],

Cell[BoxData[
\( (*\ by\ Roger\ Bagula\ 3  April\ 2003  \[Copyright]*) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
\(x = s10^2 - s20^2\)], "Input"],

Cell[BoxData[
\(s10\^2 - s20\^2\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(y = I*\((s10^2 + s20^2)\)\)], "Input"],

Cell[BoxData[
\(I\ \((s10\^2 + s20\^2)\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(z = 2*s10*s20\)], "Input"],

Cell[BoxData[
\(2\ s10\ s20\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(t1 = I*\((s30^2 + s40^2)\)\)], "Input"],

Cell[BoxData[
\(I\ \((s30\^2 + s40\^2)\)\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(t2 = s30^2 - s40^2\)], "Input"],

Cell[BoxData[
\(s30\^2 - s40\^2\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(t3 = 2*s30*s40\)], "Input"],

Cell[BoxData[
\(2\ s30\ s40\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(FullSimplify[x^2 + y^2 + z^2 + t1^2 + t2^2 + t3^2]\)], "Input"],

Cell[BoxData[
\(0\)], "Output"]
}, Open  ]],

Cell[BoxData[
\( (*\ s1, s2, s3, s4\ Dirac\ matrices*) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
\(s0 = {{0, 0, 0, 1}, \n\t\t{0, 0, 1, 0}, \n\t\t{0, 1, 0, 0},
\n{1, 0, 0, 0}}\)], "Input"],

Cell[BoxData[
\({{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s0 . s0\)], "Input"],

Cell[BoxData[
\({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(Det[%]\)], "Input"],

Cell[BoxData[
\(1\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s1 = {{0, 0, 0, \(-I\)}, \n\t\t{0, 0, I, 0}, \n\t\t{0, \(-I\), 0, 0},
\n{I, 0, 0, 0}}\)], "Input"],

Cell[BoxData[
\({{0, 0, 0, \(-I\)}, {0, 0, I, 0}, {0, \(-I\), 0, 0}, {I, 0, 0,
0}}\)],
"Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s1 . s1\)], "Input"],

Cell[BoxData[
\({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(Det[%]\)], "Input"],

Cell[BoxData[
\(1\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s2 = {{0, 0, 1, 0}, \n\t\t{0, 0, 0, \(-1\)}, \n\t\t{1, 0, 0, 0},
\n{0, \(-1\), 0, 0}}\)], "Input"],

Cell[BoxData[
\({{0, 0, 1, 0}, {0, 0, 0, \(-1\)}, {1, 0, 0, 0}, {0, \(-1\), 0,
0}}\)],
"Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s2 . s2\)], "Input"],

Cell[BoxData[
\({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(Det[%]\)], "Input"],

Cell[BoxData[
\(1\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s3 = {{1, 0, 0, 0}, \n\t\t{0, 1, 0, 0}, \n\t\t{0, 0, \(-1\), 0},
\n{0, 0, 0, \(-1\)}}\)], "Input"],

Cell[BoxData[
\({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, \(-1\), 0}, {0, 0, 0,
\(-1\)}}\)],
"Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s3 . s3\)], "Input"],

Cell[BoxData[
\({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(Det[%]\)], "Input"],

Cell[BoxData[
\(1\)], "Output"]
}, Open  ]],

Cell[BoxData[
\( (*\ Chiral\ Dirac\ matrix*) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
\(s5 = s0 . s1 . s2 . s3\)], "Input"],

Cell[BoxData[
\({{0, 0, \(-I\), 0}, {0, 0, 0, \(-I\)}, {I, 0, 0, 0}, {0, I, 0,
0}}\)],
"Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s5 . s5\)], "Input"],

Cell[BoxData[
\({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(Det[%]\)], "Input"],

Cell[BoxData[
\(1\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s6 = s3 . s2 . s1 . s0\)], "Input"],

Cell[BoxData[
\({{0, 0, \(-I\), 0}, {0, 0, 0, \(-I\)}, {I, 0, 0, 0}, {0, I, 0,
0}}\)],
"Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(s6 . s6\)], "Input"],

Cell[BoxData[
\({{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(Det[%]\)], "Input"],

Cell[BoxData[
\(1\)], "Output"]
}, Open  ]],

Cell[BoxData[
\( (*\ Identity\ Matrix*) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
\(I4 = {{I, 0, 0, 0}, \n\t\t{0, I, 0, 0}, \n\t\t{0, 0, I, 0},
\n{0, 0, 0, I}}\)], "Input"],

Cell[BoxData[
\({{I, 0, 0, 0}, {0, I, 0, 0}, {0, 0, I, 0}, {0, 0, 0, I}}\)], "Output"]
}, Open  ]],

Cell[BoxData[
\( (*\ group\ definition\ as\ six\ space*) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
\(g = x*s0 + y*s1 + z*s2 + t1*s3 + t2*s5 + t3*I4\)], "Input"],

Cell[BoxData[
\({{2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\), 0,
2\ s10\ s20 - I\ \((s30\^2 - s40\^2)\), 2\ s10\^2}, {0,
2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\), \(-2\)\ s20\^2,
\(-2\)\ s10\ s20 - I\ \((s30\^2 - s40\^2)\)}, {
2\ s10\ s20 + I\ \((s30\^2 - s40\^2)\), 2\ s10\^2,
2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\), 0}, {\(-2\)\ s20\^2,
\(-2\)\ s10\ s20 + I\ \((s30\^2 - s40\^2)\), 0,
2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\)}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(MatrixForm[g]\)], "Input"],

Cell[BoxData[
TagBox[
RowBox[{"(", GridBox[{
{\(2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\)\), "0",
\(2\ s10\ s20 - I\ \((s30\^2 - s40\^2)\)\), \(2\ s10\^2\)},
{"0", \(2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\)\),
\(\(-2\)\ s20\^2\),
\(\(-2\)\ s10\ s20 - I\ \((s30\^2 - s40\^2)\)\)},
{\(2\ s10\ s20 + I\ \((s30\^2 - s40\^2)\)\), \(2\ s10\^2\),
\(2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\)\), "0"},
{\(\(-2\)\ s20\^2\),
\(\(-2\)\ s10\ s20 + I\ \((s30\^2 - s40\^2)\)\), "0",
\(2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\)\)}
}], ")"}],
(MatrixForm[ #]&)]], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(Det[g]\)], "Input"],

Cell[BoxData[
\(0\)], "Output"]
}, Open  ]],

Cell[BoxData[
\( (*\ self\ congugate\ g = gstar*) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
\(gstar = x*s0 + y*s1 + z*s2 + t1*s3 + t2*s5 + t3*I4\)], "Input"],

Cell[BoxData[
\({{2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\), 0,
2\ s10\ s20 - I\ \((s30\^2 - s40\^2)\), 2\ s10\^2}, {0,
2\ I\ s30\ s40 + I\ \((s30\^2 + s40\^2)\), \(-2\)\ s20\^2,
\(-2\)\ s10\ s20 - I\ \((s30\^2 - s40\^2)\)}, {
2\ s10\ s20 + I\ \((s30\^2 - s40\^2)\), 2\ s10\^2,
2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\), 0}, {\(-2\)\ s20\^2,
\(-2\)\ s10\ s20 + I\ \((s30\^2 - s40\^2)\), 0,
2\ I\ s30\ s40 - I\ \((s30\^2 + s40\^2)\)}}\)], "Output"]
}, Open  ]],

Cell[BoxData[
\( (*\
null\ matrix\ output\ of\
\(group : \
x^2 + y^2 + z^2 + t1^2 + t2^2 + t3^2 ==
0\ with\ four\ space\ mapped\ to\ six\ space\)*) \)], "Input"],

Cell[CellGroupData[{

Cell[BoxData[
\(gg = FullSimplify[g . gstar]\)], "Input"],

Cell[BoxData[
\({{\(-4\)\ s30\ s40\ \((s30 + s40)\)\^2, 0,
4\ s30\ s40\ \((2\ I\ s10\ s20 + s30\^2 - s40\^2)\),
8\ I\ s10\^2\ s30\ s40}, {0, \(-4\)\ s30\ s40\ \((s30 + s40)\)\^2,
\(-8\)\ I\ s20\^2\ s30\ s40,
4\ s30\ s40\ \((\(-2\)\ I\ s10\ s20 + s30\^2 - s40\^2)\)}, {
4\ s30\ s40\ \((2\ I\ s10\ s20 - s30\^2 + s40\^2)\),
8\ I\ s10\^2\ s30\ s40, 4\ s30\ \((s30 - s40)\)\^2\ s40, 0}, {
\(-8\)\ I\ s20\^2\ s30\ s40,
\(-4\)\ s30\ s40\ \((2\ I\ s10\ s20 + s30\^2 - s40\^2)\), 0,
4\ s30\ \((s30 - s40)\)\^2\ s40}}\)], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(MatrixForm[gg]\)], "Input"],

Cell[BoxData[
TagBox[
RowBox[{"(", GridBox[{
{\(\(-4\)\ s30\ s40\ \((s30 + s40)\)\^2\), "0",
\(4\ s30\ s40\ \((2\ I\ s10\ s20 + s30\^2 - s40\^2)\)\),
\(8\ I\ s10\^2\ s30\ s40\)},
{"0", \(\(-4\)\ s30\ s40\ \((s30 + s40)\)\^2\),
\(\(-8\)\ I\ s20\^2\ s30\ s40\),
\(4\ s30\ s40\ \((\(-2\)\ I\ s10\ s20 + s30\^2 - s40\^2)\)\)},
{\(4\ s30\ s40\ \((2\ I\ s10\ s20 - s30\^2 + s40\^2)\)\),
\(8\ I\ s10\^2\ s30\ s40\),
\(4\ s30\ \((s30 - s40)\)\^2\ s40\), "0"},
{\(\(-8\)\ I\ s20\^2\ s30\ s40\),
\(\(-4\)\ s30\ s40\ \((2\ I\ s10\ s20 + s30\^2 - s40\^2)\)\),
"0", \(4\ s30\ \((s30 - s40)\)\^2\ s40\)}
}], ")"}],
(MatrixForm[ #]&)]], "Output"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
\(Det[gg]\)], "Input"],

Cell[BoxData[
\(0\)], "Output"]
}, Open  ]]
},
FrontEndVersion->"Macintosh 3.0",
ScreenRectangle->{{0, 1920}, {0, 1060}},
WindowSize->{1046, 819},
WindowMargins->{{102, Automatic}, {Automatic, 48}},
MacintoshSystemPageSetup->"\<\
00/0001804P000000_@2@?olonh35@9B7`<5:@?l0040004/0B`000003509H04/
02d5X5k/02H20@4101P00BL?00400@0000000000000000010000000000000000
0000000000000002000000@210D00000\>"
]

(***********************************************************************
Cached data follows.  If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of
the file.  The cache data will then be recreated when you save this file
from within Mathematica.
***********************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 158, 3, 27, "Input"],
Cell[1870, 54, 120, 2, 27, "Input"],
Cell[1993, 58, 82, 1, 27, "Input"],
Cell[2078, 61, 84, 1, 27, "Input"],
Cell[2165, 64, 168, 3, 27, "Input"],
Cell[2336, 69, 86, 1, 27, "Input"],
Cell[2425, 72, 88, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[2538, 77, 50, 1, 27, "Input"],
Cell[2591, 80, 49, 1, 28, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2677, 86, 58, 1, 27, "Input"],
Cell[2738, 89, 58, 1, 28, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2833, 95, 46, 1, 27, "Input"],
Cell[2882, 98, 45, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[2964, 104, 59, 1, 27, "Input"],
Cell[3026, 107, 58, 1, 28, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3121, 113, 51, 1, 27, "Input"],
Cell[3175, 116, 49, 1, 28, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3261, 122, 47, 1, 27, "Input"],
Cell[3311, 125, 45, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3393, 131, 83, 1, 27, "Input"],
Cell[3479, 134, 35, 1, 26, "Output"]
}, Open  ]],
Cell[3529, 138, 72, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[3626, 143, 117, 2, 75, "Input"],
Cell[3746, 147, 90, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[3873, 153, 40, 1, 27, "Input"],
Cell[3916, 156, 90, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4043, 162, 39, 1, 27, "Input"],
Cell[4085, 165, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4157, 171, 127, 2, 75, "Input"],
Cell[4287, 175, 103, 2, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4427, 182, 40, 1, 27, "Input"],
Cell[4470, 185, 90, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4597, 191, 39, 1, 27, "Input"],
Cell[4639, 194, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4711, 200, 127, 2, 75, "Input"],
Cell[4841, 204, 103, 2, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[4981, 211, 40, 1, 27, "Input"],
Cell[5024, 214, 90, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5151, 220, 39, 1, 27, "Input"],
Cell[5193, 223, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5265, 229, 127, 2, 75, "Input"],
Cell[5395, 233, 103, 2, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5535, 240, 40, 1, 27, "Input"],
Cell[5578, 243, 90, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[5705, 249, 39, 1, 27, "Input"],
Cell[5747, 252, 35, 1, 26, "Output"]
}, Open  ]],
Cell[5797, 256, 62, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[5884, 261, 55, 1, 27, "Input"],
Cell[5942, 264, 103, 2, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6082, 271, 40, 1, 27, "Input"],
Cell[6125, 274, 90, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6252, 280, 39, 1, 27, "Input"],
Cell[6294, 283, 35, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6366, 289, 55, 1, 27, "Input"],
Cell[6424, 292, 103, 2, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6564, 299, 40, 1, 27, "Input"],
Cell[6607, 302, 90, 1, 26, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[6734, 308, 39, 1, 27, "Input"],
Cell[6776, 311, 35, 1, 26, "Output"]
}, Open  ]],
Cell[6826, 315, 57, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[6908, 320, 117, 2, 75, "Input"],
Cell[7028, 324, 90, 1, 26, "Output"]
}, Open  ]],
Cell[7133, 328, 74, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[7232, 333, 79, 1, 27, "Input"],
Cell[7314, 336, 513, 8, 45, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[7864, 349, 46, 1, 27, "Input"],
Cell[7913, 352, 723, 14, 89, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[8673, 371, 39, 1, 27, "Input"],
Cell[8715, 374, 35, 1, 26, "Output"]
}, Open  ]],
Cell[8765, 378, 67, 1, 27, "Input"],

Cell[CellGroupData[{
Cell[8857, 383, 83, 1, 27, "Input"],
Cell[8943, 386, 513, 8, 45, "Output"]
}, Open  ]],
Cell[9471, 397, 205, 5, 27, "Input"],

Cell[CellGroupData[{
Cell[9701, 406, 61, 1, 27, "Input"],
Cell[9765, 409, 605, 10, 79, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[10407, 424, 47, 1, 27, "Input"],
Cell[10457, 427, 827, 16, 89, "Output"]
}, Open  ]],

Cell[CellGroupData[{
Cell[11321, 448, 40, 1, 27, "Input"],
Cell[11364, 451, 35, 1, 26, "Output"]
}, Open  ]]
}
]
*)

(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)

Respectfully, Roger L. Bagula