Re: Calabi-Yau Manifold visualization
- To: mathgroup at smc.vnet.net
- Subject: [mg51724] Re: Calabi-Yau Manifold visualization
- From: Roger Bagula <tftn at earthlink.net>
- Date: Sat, 30 Oct 2004 03:48:25 -0400 (EDT)
- References: <clst4b$3n6$1@smc.vnet.net>
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
Dr Peter Hennes did work on "Weierstrass Representations of Minimal Real Kaehler Submanifolds" in 6d. Although not the same as 6D Calabi-Yau ( also called null Ricci) they are closely related areas. http://www.math.sunysb.edu/~phennes/ He might help you if you asked nicely. I did some 3d projections in Mathematica based on his equations and I know it is possible. I have two surfaces ( notebooks 1.2mb, 1.9mb). I can probably get better pictures if you want them. They aren't copywrited yet. Here's a notebook I pulled up with a sherlock search. (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 4715, 186]*) (*NotebookOutlinePosition[ 5559, 213]*) (* CellTagsIndexPosition[ 5515, 209]*) (*WindowFrame->Normal*) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[ \(w1 = {1/z^2, r0*z, \(-r0\)*z, 1/z^2}\)], "Input"], Cell[BoxData[ \({1\/z\^2, r0\ z, \(-r0\)\ z, 1\/z\^2}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(w2 = {Exp[\(-z\)], r0*Exp[z], \(-r0\)*Exp[z], Exp[\(-z\)]}\)], "Input"], Cell[BoxData[ \({E\^\(-z\), E\^z\ r0, \(-E\^z\)\ r0, E\^\(-z\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(f1 = w1[\([1]\)]\)], "Input"], Cell[BoxData[ \(1\/z\^2\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(g1 = w1[\([2]\)]\)], "Input"], Cell[BoxData[ \(r0\ z\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(f2 = w1[\([3]\)]\)], "Input"], Cell[BoxData[ \(\(-r0\)\ z\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(g2 = w1[\([4]\)]\)], "Input"], Cell[BoxData[ \(1\/z\^2\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ExpandAll[z^5*\((f2*\((f1*\((g1 - g2)\)^2)\) + 2)\)/r0^3]\)], "Input"], Cell[BoxData[ \(\(-\(1\/r0\^2\)\) + \(2\ z\^3\)\/r0 + \(2\ z\^5\)\/r0\^3 - z\^6\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[ \(-\(1\/r0\^2\)\) + \(2\ z\^3\)\/r0 + \(2\ z\^5\)\/r0\^3 - z\^6 == 0, z] \)], "Input"], Cell[BoxData[ \({{z \[Rule] Root[r0 - 2\ r0\^2\ #1\^3 - 2\ #1\^5 + r0\^3\ #1\^6&, 1]}, { z \[Rule] Root[r0 - 2\ r0\^2\ #1\^3 - 2\ #1\^5 + r0\^3\ #1\^6&, 2]}, { z \[Rule] Root[r0 - 2\ r0\^2\ #1\^3 - 2\ #1\^5 + r0\^3\ #1\^6&, 3]}, { z \[Rule] Root[r0 - 2\ r0\^2\ #1\^3 - 2\ #1\^5 + r0\^3\ #1\^6&, 4]}, { z \[Rule] Root[r0 - 2\ r0\^2\ #1\^3 - 2\ #1\^5 + r0\^3\ #1\^6&, 5]}, { z \[Rule] Root[r0 - 2\ r0\^2\ #1\^3 - 2\ #1\^5 + r0\^3\ #1\^6&, 6]}} \)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(f1a = w2[\([1]\)]\)], "Input"], Cell[BoxData[ \(E\^\(-z\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(g1a = w2[\([2]\)]\)], "Input"], Cell[BoxData[ \(E\^z\ r0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(f2a = w2[\([3]\)]\)], "Input"], Cell[BoxData[ \(\(-E\^z\)\ r0\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(g2a = w2[\([4]\)]\)], "Input"], Cell[BoxData[ \(E\^\(-z\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[f2a + 2/\((f1a*\((g1a - g2a)\)^2)\) == 0, z]\)], "Input"], Cell[BoxData[ \(Solve::"ifun" \( : \ \) "Inverse functions are being used by \!\(Solve\), so some solutions may \ not be found."\)], "Message"], Cell[BoxData[ \({{z \[Rule] Log[\(-\@\(1\/r0\^3 + 1\/r0 - \@\(1 + 2\ r0\^2\)\/r0\^3\)\)]}, { z \[Rule] Log[\@\(1\/r0\^3 + 1\/r0 - \@\(1 + 2\ r0\^2\)\/r0\^3\)]}, { z \[Rule] Log[\(-\@\(1\/r0\^3 + 1\/r0 + \@\(1 + 2\ r0\^2\)\/r0\^3\)\)]}, { z \[Rule] Log[\@\(1\/r0\^3 + 1\/r0 + \@\(1 + 2\ r0\^2\)\/r0\^3\)]}} \)], "Output"] }, Open ]] }, FrontEndVersion->"Macintosh 3.0", ScreenRectangle->{{0, 1920}, {0, 1060}}, WindowSize->{1126, 789}, WindowMargins->{{321, Automatic}, {Automatic, 65}}, MacintoshSystemPageSetup->"\<\ 00/0001804P000000_@2@?olonh35@9B7`<5:@?l0040004/0B`000003509H04/ 02d5X5k/02H20@4101P00BL?00400@0000000000000000010000000000000000 0000000000000002000000@210D00000\>" ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[1731, 51, 69, 1, 27, "Input"], Cell[1803, 54, 71, 1, 40, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[1911, 60, 91, 1, 27, "Input"], Cell[2005, 63, 81, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2123, 69, 49, 1, 27, "Input"], Cell[2175, 72, 41, 1, 40, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2253, 78, 49, 1, 27, "Input"], Cell[2305, 81, 39, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2381, 87, 49, 1, 27, "Input"], Cell[2433, 90, 44, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2514, 96, 49, 1, 27, "Input"], Cell[2566, 99, 41, 1, 40, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2644, 105, 90, 1, 27, "Input"], Cell[2737, 108, 100, 2, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2874, 115, 125, 3, 44, "Input"], Cell[3002, 120, 506, 7, 45, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3545, 132, 50, 1, 27, "Input"], Cell[3598, 135, 43, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3678, 141, 50, 1, 27, "Input"], Cell[3731, 144, 42, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3810, 150, 50, 1, 27, "Input"], Cell[3863, 153, 47, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3947, 159, 50, 1, 27, "Input"], Cell[4000, 162, 43, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4080, 168, 83, 1, 27, "Input"], Cell[4166, 171, 154, 3, 22, "Message"], Cell[4323, 176, 376, 7, 50, "Output"] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************) Mark Fisher wrote: >I am seeking code to generate the 3D visualization of the 6D Calabi-Yau >Manifold that appears in string theory presentations such as Brian >Greene's book. > >For your information, the code will be used to produce an illustration >in a book by David Nelson that deals with religion in some fashion. >Nelson has identified a person who has such code (who can be found >easily via Google), but (as I understand it) this person will not give >Nelson permission to use the code and/or image. > >I take no position on the property rights issue; I am just trying to >help a friend of a friend of a friend. > >--Mark. > > > -- Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : alternative email: rlbtftn at netscape.net URL : http://home.earthlink.net/~tftn