matrix method for minimal pisot theta sequences as matrices
- To: mathgroup at smc.vnet.net
- Subject: [mg50387] matrix method for minimal pisot theta sequences as matrices
- From: "Roger L. Bagula" <rlbtftn at netscape.net>
- Date: Wed, 1 Sep 2004 01:49:28 -0400 (EDT)
- Reply-to: tftn at earthlink.net
- Sender: owner-wri-mathgroup at wolfram.com
The Markov matrix sequence of : Mf={{0,1},{1,1}]--> Fibonacci M0={{0,1,0},{0,0,1},{1,1,0}}--> Minmal cubic Pisot eigenvalues/ theta0 : 1-> {2,3} M1={{0,1,0,0},{0,0,1,0},{0,0,0,1},{1,0,0,1}}-->Minmal quartic Pisot eigenvalues/ theta1 1-> {1,4} Produce tensor like sequences when used in a Markov recursive manner. (* Minimal Pisot 3by3 Markov sequence*) digits=21 M={{0,1,0},{0,0,1},{1,1,0}} i=IdentityMatrix[3] Det[-M+x*i] A[n_]:=M.A[n-1]; A[0]:={{0,1,1},{1,1,2},{1,2,2}}; (* flattened sequence of 3by3matrices made with a Minimal Pisot recurrence*) b=Flatten[Table[M.A[n],{n,0,digits}]] Dimensions[b][[1]] ListPlot[b,PlotJoined->True] (* Minimal Pisot theta 1 4by4 Markov sequence*) digits=15 M={{0,1,0,0},{0,0,1,0},{0,0,0,1},{1,0,0,1}} A[n_]:=M.A[n-1]; A[0]:={{1,1,1,1},{1,1,1,2},{1,1,2,3},{1,2,3,4}}; i=IdentityMatrix[4] Det[M-x*i] (* flattened sequence of 4by4 matrices made with a theta1 Minimal Pisot recurrence*) b=Flatten[Table[M.A[n],{n,0,digits}]] Dimensions[b][[1]] b=Flatten[Table[M.A[n],{n,0,digits}]] Mathematica solver for Minmal Pisot matrix Markov: (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 4639, 187]*) (*NotebookOutlinePosition[ 5483, 214]*) (* CellTagsIndexPosition[ 5439, 210]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ \(Clear[fib, A, M, f]\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[{ \(fib[n_Integer?Positive]\ := \(fib[n]\ = \tfib[n - 2] + fib[n - 3]\)\), \(fib[0] = \(fib[1]\ = \(fib[2] = \ 1\)\)\)}], "Input"], Cell[BoxData[ \(1\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(A[k_] = Table[fib[k + i + j - 2], {i, 1, 3}, {j, 1, 3}]\)], "Input"], Cell[BoxData[ \({{fib[k], fib[1 + k], fib[2 + k]}, {fib[1 + k], fib[2 + k], fib[3 + k]}, {fib[2 + k], fib[3 + k], fib[4 + k]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[A[0]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", GridBox[{ {"1", "1", "1"}, {"1", "1", "2"}, {"1", "2", "2"} }], ")"}], (MatrixForm[ #]&)]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[A[1]]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", GridBox[{ {"1", "1", "2"}, {"1", "2", "2"}, {"2", "2", "3"} }], ")"}], (MatrixForm[ #]&)]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(M = Array[f, {3, 3}]\)], "Input"], Cell[BoxData[ \({{f[1, 1], f[1, 2], f[1, 3]}, {f[2, 1], f[2, 2], f[2, 3]}, {f[3, 1], f[3, 2], f[3, 3]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(m1 = Flatten[M]\)], "Input"], Cell[BoxData[ \({f[1, 1], f[1, 2], f[1, 3], f[2, 1], f[2, 2], f[2, 3], f[3, 1], f[3, 2], f[3, 3]}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[A[1] - M . A[0] == 0\ , m1]\)], "Input"], Cell[BoxData[ \({{f[1, 1] \[Rule] 0, f[1, 2] \[Rule] 1, f[1, 3] \[Rule] 0, f[2, 1] \[Rule] 0, f[2, 2] \[Rule] 0, f[2, 3] \[Rule] 1, f[3, 1] \[Rule] 1, f[3, 2] \[Rule] 1, f[3, 3] \[Rule] 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(M1 = Flatten[M /. %, 1]\)], "Input"], Cell[BoxData[ \({{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(MatrixForm[M1]\)], "Input"], Cell[BoxData[ TagBox[ RowBox[{"(", GridBox[{ {"0", "1", "0"}, {"0", "0", "1"}, {"1", "1", "0"} }], ")"}], (MatrixForm[ #]&)]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(i = IdentityMatrix[3]\)], "Input"], Cell[BoxData[ \({{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[M1 - x*i]\)], "Input"], Cell[BoxData[ \(1 + x - x\^3\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(N[Eigenvalues[M1]]\)], "Input"], Cell[BoxData[ \({1.32471795724474605`, \(-0.662358978622373051`\) + 0.562279512062301378`\ I, \(-0.662358978622373051`\) - 0.562279512062301378`\ I}\)], "Output"] }, Open ]] }, FrontEndVersion->"Macintosh 3.0", ScreenRectangle->{{0, 1920}, {0, 1060}}, WindowSize->{789, 777}, WindowMargins->{{432, Automatic}, {Automatic, 118}}, MacintoshSystemPageSetup->"\<\ 00/0001804P000000_@2@?olonh35@9B7`<5:@?l0040004/0B`000003509H04/ 02d5X5k/02H20@4101P00BL?00400@0000000000000000010000000000000000 0000000000000002000000@210D00000\>" ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1709, 49, 52, 1, 27, "Input"], Cell[CellGroupData[{ Cell[1786, 54, 162, 3, 43, "Input"], Cell[1951, 59, 35, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2023, 65, 88, 1, 27, "Input"], Cell[2114, 68, 153, 2, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2304, 75, 49, 1, 27, "Input"], Cell[2356, 78, 200, 7, 66, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2593, 90, 49, 1, 27, "Input"], Cell[2645, 93, 200, 7, 66, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[2882, 105, 53, 1, 27, "Input"], Cell[2938, 108, 130, 2, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3105, 115, 48, 1, 27, "Input"], Cell[3156, 118, 122, 2, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3315, 125, 66, 1, 27, "Input"], Cell[3384, 128, 225, 3, 41, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3646, 136, 56, 1, 27, "Input"], Cell[3705, 139, 67, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3809, 145, 47, 1, 27, "Input"], Cell[3859, 148, 200, 7, 66, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4096, 160, 54, 1, 27, "Input"], Cell[4153, 163, 67, 1, 26, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4257, 169, 46, 1, 27, "Input"], Cell[4306, 172, 46, 1, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[4389, 178, 51, 1, 27, "Input"], Cell[4443, 181, 180, 3, 26, "Output"] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************) Respectfully, Roger L. Bagula tftn at earthlink.net, 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : URL : http://home.earthlink.net/~tftn URL : http://victorian.fortunecity.com/carmelita/435/