Re: Re: plot thousands(?) of trajectories in single graph.
- To: mathgroup at smc.vnet.net
- Subject: [mg50608] Re: Re: [mg50489] plot thousands(?) of trajectories in single graph.
- From: sean kim <sean_incali at yahoo.com>
- Date: Sun, 12 Sep 2004 04:42:22 -0400 (EDT)
- Reply-to: sean_incali at yahoo.com
- Sender: owner-wri-mathgroup at wolfram.com
hm... i think my install is bad? I tried it with fresh kernel with Graphics preloaded. DisplayTogetherArray[ Table[ Plot[ Evaluate[ndsoln[[k]]], {t, 0, 250}, PlotRange -> All, PlotStyle -> ps[[k]], PlotLabel -> StyleForm[ expr[[k]], FontColor -> ps[[k]], FontFamily -> "Helvetica", FontWeight -> "Bold", FontSize -> 12]], {k, 4}], ImageSize -> 500] works as expected with an GraphicsArray object with f plots in a row. but if i add Partition, it still brings back a blank GraphicsArray object. DisplayTogetherArray[ Partition[ Table[ Plot[ Evaluate[ndsoln[[k]]], {t, 0, 250}, PlotRange -> All, PlotStyle -> ps[[k]], PlotLabel -> StyleForm[ expr[[k]], FontColor -> ps[[k]], FontFamily -> "Helvetica", FontWeight -> "Bold", FontSize -> 12]], {k, 4}], 2], ImageSize -> 500] I'm using Windows version 5.0. I have tried the Examples that use similar format of commands in the Help and they seem to work fine. I wonder what's going on? Does anyone else have similar problems? ( someone using windows? ) Thanks in advance for any thoughts sean --- Bob Hanlon <hanlonr at cox.net> wrote: > Works fine in version 5.0.1 under Mac OS X. > > Start with a fresh kernel and make sure that you > load the Graphics packages > first. > > Needs["Graphics`"]; > > > Bob Hanlon > > > > > From: sean kim <sean_incali at yahoo.com> To: mathgroup at smc.vnet.net > > Date: 2004/09/10 Fri PM 07:30:41 EDT > > To: hanlonr at cox.net > > CC: mathgroup at smc.vnet.net > > Subject: [mg50608] Re: [mg50489] plot thousands(?) of > trajectories in single graph. > > > > Hi Bob. > > > > I have tried this for few times now, but I just > can;t > > seem to get the array thing to work... > > > > it will display blank graphics... > > > > > > DisplayTogetherArray[ > > Partition[ > > Table[ > > Plot[ > > Evaluate[ndsoln[[k]]], > > {t, 0, 250}, > > PlotRange -> All, > > PlotStyle -> ps[[k]], > > PlotLabel -> StyleForm[ expr[[k]], > > FontColor -> ps[[k]], > > FontFamily -> "Helvetica", > > FontWeight -> "Bold", > > FontSize -> 12]], {k, 4}], 2], > > ImageSize -> 500]; > > > > > > I tought I wold be clever and do Show... > > but that just brings back two blank graphics. > > > > Show[ > > DisplayTogetherArray[ > > Partition[ > > Table[ > > Plot[ > > Evaluate[ndsoln[[k]]], > > {t, 0, 250}, > > PlotRange -> All, > > PlotStyle -> ps[[k]], > > PlotLabel -> StyleForm[ expr[[k]], > > FontColor -> ps[[k]], > > FontFamily -> "Helvetica", > > FontWeight -> "Bold", > > FontSize -> 12]], {k, 4}], 2], > > ImageSize -> 500]; > > ] > > > > > > So I thought I need to add displayfunction > statements > > > > Show[ > > DisplayTogetherArray[ Partition[ Table[ Plot[ > > Evaluate[ndsoln[[k]]], {t, 0, 250}, PlotRange -> > All, > > PlotStyle -> ps[[k]], DisplayFunction -> Identity, > > PlotLabel -> StyleForm[ expr[[k]], FontColor -> > > ps[[k]], FontFamily -> "Helvetica", FontWeight -> > > "Bold", FontSize -> 12], DisplayFunction -> > > $DisplayFunction], {k, 4}], 2], ImageSize -> 500] > > ]; > > > > still nothing... > > > > Maybe it's some type of modification setting you > have > > that i don't? > > > > thanks in advance for any insights > > > > > > sean > > > > --- Bob Hanlon <hanlonr at cox.net> wrote: > > > > > I recommend that you break it into an array of > four > > > plots. Increase the value > > > of n for more cases of each plot. > > > > > > Needs["Graphics`"]; > > > > > > n=20; > > > expr={a[t],b[t],x[t],y[t]}; > > > ps = {RGBColor[0,0,0],RGBColor[.7,0,0], > > > RGBColor[0,.7,0],RGBColor[0,0,.7]}; > > > ndsoln = Transpose[ > > > Table[( > > > k1=Random[Real,{1/10,5/10}]; > > > k2=Random[Real,{1/20,5/20}]; > > > expr /.NDSolve[{ > > > a'[t]==-k1 a[t] x[t], > > > b'[t]==-k2 b[t] y[t], > > > x'[t]==-k1 a[t] x[t]+k2 b[t] > y[t], > > > y'[t]==k1 a[t] x[t]-k2 b[t] > y[t], > > > a[0]==1, > > > b[0]==1, > > > x[0]==1, > > > y[0]==0}, > > > {a,b,x,y}, > > > {t,0,250}][[1]]), > > > {k,n}]]; > > > DisplayTogetherArray[ > > > Partition[ > > > Table[ > > > Plot[ > > > Evaluate[ndsoln[[k]]], > > > {t,0,250}, > > > PlotRange->All, > > > PlotStyle->ps[[k]], > > > PlotLabel->StyleForm[ > > > expr[[k]], > > > FontColor->ps[[k]], > > > FontFamily->"Helvetica", > > > FontWeight->"Bold", > > > FontSize->12]], > > > {k,4}], > > > 2], > > > ImageSize->500]; > > > > > > > > > Bob Hanlon > > > > > > > > > > > From: sean kim <sean_incali at yahoo.com> To: mathgroup at smc.vnet.net > > > > Date: 2004/09/07 Tue AM 05:43:50 EDT > > > > To: mathgroup at smc.vnet.net > > > > Subject: [mg50608] [mg50489] plot thousands(?) of > > > trajectories in single graph. > > > > > > > > hello group, > > > > > > > > I have a routein that solves a system of odes > over > > > a > > > > parameter space thousands of times while > randomly > > > > varying the values. > > > > > > > > What I would like to do is take a variable and > the > > > > resulting solutions(however many routine has > > > generated > > > > over the course of evaluation) and plot them > on > > > single > > > > graph. > > > > > > > > So you will get rather messy graph, but > > > nonetheless > > > > shows possible trajectories given system can > > > yield. > > > > > > > > How do I go about doing this? > > > > > > > > I thought i could save the interpolating > functions > > > and > > > > then evaluate thousands at the end of a > routine > > > and > > > > show together. But How do I save the > interpolating > > > > function? > > > > > > > > or do I plot with inside the module with > > > > DisplayFunction-> Identity and then save the > plot > > > and > > > > DisplayTogether the thousands of graphs at the > end > > > of > > > > the routine. > > > > > > > > if doing thousands isn't possible, is it > possible > > > to > > > > show hundreds of trajectories? > > > > > > > > thanks in advance for any insights. > > > > > > > > > > > > sean > > > > > > > > code below is a example skeletal code for > running > > > > hundred random solutions of an ode system. > > > > > > > > > > > > Do[ > > > > Module[{}, > > > > k1 = Random[Real, {1/10, 5/10}]; > > > > k2 = Random[Real, {1/20, 5/20}]; > > > > ndsolution = > > > > NDSolve[{a'[t] == -k1 a[t] x[t], b'[t] == -k2 > > > b[t] > > > > y[t], x'[t] == -k1 a[t] x[t] + k2 b[t] y[t], > y'[t] > > > == > > > > k1 a[t] x[t] - k2 b[t] y[t], a[0] == 1, b[0] > == > > > 1, > > > > x[0] == 1, y[0] == 0},{a, b, x, y}, {t, 0, > > > 250}][[1]]; > > > > Plot[Evaluate[{a[t], b[t], x[t], y[t]} /. > > > ndsolution], > > > > {t, 0, 250}, PlotRange -> All, PlotStyle -> > > > > {{AbsoluteThickness[2], RGBColor[0, 0, 0]}, > > > > {AbsoluteThickness[2], RGBColor[.7, 0, 0]}, > > > > {AbsoluteThickness[2], RGBColor[0, .7, 0]}, > > > > {AbsoluteThickness[2], RGBColor[0, 0, .7]}}, > Axes > > > -> > > > > False, Frame -> True, PlotLabel -> StyleForm[A > > > > StyleForm[" B", FontColor -> RGBColor[.7, 0, > 0]] > > > > StyleForm[" X", FontColor -> RGBColor[0, .7, > > > > 0]]StyleForm[" Y", FontColor -> RGBColor[0, 0, > > > .7]], > > > > FontFamily -> "Helvetica", FontWeight -> > "Bold"]]; > > > > ] > > > > ,{i, 100}] > > > > > > > > > > > > > > > > > > > > > > > > _______________________________ > > > > Do you Yahoo!? > > > > Win 1 of 4,000 free domain names from Yahoo! > Enter > > > now. > > > > http://promotions.yahoo.com/goldrush > > > > > > > > > > > > > > > > > > > > > > > > _______________________________ > > Do you Yahoo!? > > Shop for Back-to-School deals on Yahoo! Shopping. > > http://shopping.yahoo.com/backtoschool > > > > _______________________________ Do you Yahoo!? Shop for Back-to-School deals on Yahoo! Shopping. http://shopping.yahoo.com/backtoschool