Re: Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- To: mathgroup at smc.vnet.net
- Subject: [mg50632] Re: [mg50617] Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 15 Sep 2004 01:49:27 -0400 (EDT)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
test={Re[Sqrt[-1+eta^2]], Im[Sqrt[-1+eta^2]]}; Simplify[test, -1 < eta < 1] {0, Sqrt[1 - eta^2]} Simplify[test, eta <= -1 || 1 <= eta] {Sqrt[eta^2 - 1], 0} Simplify[test, Element[eta, Reals] && Abs[eta] < 1] {0, Sqrt[1 - eta^2]} Simplify[test, Element[eta, Reals] && Abs[eta] >= 1] {Sqrt[eta^2 - 1], 0} Bob Hanlon > > From: psa at laplacian.co.uk (peteraptaker) To: mathgroup at smc.vnet.net > Date: 2004/09/13 Mon AM 02:19:33 EDT > To: mathgroup at smc.vnet.net > Subject: [mg50632] [mg50617] Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1] > > Have I missed something - my apologies if this is answered in a FAQ > I want to make the simple Re and Im parts simplify properly? > > test = > {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]} > > FullSimplify[test, eta > 1] > gives*{Sqrt[-1 + eta^2], 0} > > But > FullSimplify[test, eta < 1] > gives > {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]} > > Needs["Algebra`ReIm`"] does not seem to help > > Real numbers demonstrate what should happen: > test) /. {{eta -> 0.1}, {eta -> 2}} > {{0., 0.99498743710662}, {Sqrt[3], 0}} > >