Re: Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- To: mathgroup at smc.vnet.net
- Subject: [mg50625] Re: [mg50617] Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: Andrzej Kozlowski <andrzej at akikoz.net>
- Date: Wed, 15 Sep 2004 01:49:17 -0400 (EDT)
- References: <200409130619.CAA14342@smc.vnet.net>
- Reply-to: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Sender: owner-wri-mathgroup at wolfram.com
On 13 Sep 2004, at 15:19, peteraptaker wrote: > *This message was transferred with a trial version of CommuniGate(tm) > Pro* > Have I missed something - my apologies if this is answered in a FAQ > I want to make the simple Re and Im parts simplify properly? > > test = > {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]} > > FullSimplify[test, eta > 1] > gives*{Sqrt[-1 + eta^2], 0} > > But > FullSimplify[test, eta < 1] > gives > {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]} > > Needs["Algebra`ReIm`"] does not seem to help > > Real numbers demonstrate what should happen: > test) /. {{eta -> 0.1}, {eta -> 2}} > {{0., 0.99498743710662}, {Sqrt[3], 0}} > > There is nothing really strange here, Mathematica simply can't give a single simple expression that would cover all the cases that arise. So you have to split it yourself, for example: FullSimplify[test, eta < -1] {Sqrt[eta^2 - 1], 0} FullSimplify[test, eta == -1] {0, 0} FullSimplify[test, -1 < eta < 1] {0, Sqrt[1 - eta^2]} FullSimplify[test, eta == 1] {0, 0} FullSimplify[test, 1 <= eta] {Sqrt[eta^2 - 1], 0} or, you can combine everything into just two cases: FullSimplify[test, eta $B":(B Reals && Abs[eta] < 1] {Re[Sqrt[eta^2 - 1]], Im[Sqrt[eta^2 - 1]]} FullSimplify[test, eta $B":(B Reals && Abs[eta] >= 1] {Sqrt[eta^2 - 1], 0} In fact you do not really need FullSimplify, simple Simplify will do just as well. Andrzej Kozlowski Chiba, Japan http://www.akikoz.net/~andrzej/ http://www.mimuw.edu.pl/~akoz/
- References:
- Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: psa@laplacian.co.uk (peteraptaker)
- Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]