Re: Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- To: mathgroup at smc.vnet.net
- Subject: [mg50628] Re: [mg50617] Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: Andrzej Kozlowski <andrzej at akikoz.net>
- Date: Wed, 15 Sep 2004 01:49:20 -0400 (EDT)
- References: <200409130619.CAA14342@smc.vnet.net> <8C2E6168-0558-11D9-A0AA-000A95B4967A@akikoz.net>
- Sender: owner-wri-mathgroup at wolfram.com
On 13 Sep 2004, at 16:43, Andrzej Kozlowski wrote: > On 13 Sep 2004, at 15:19, peteraptaker wrote: > >> *This message was transferred with a trial version of CommuniGate(tm) >> Pro* >> Have I missed something - my apologies if this is answered in a FAQ >> I want to make the simple Re and Im parts simplify properly? >> >> test = >> {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]} >> >> FullSimplify[test, eta > 1] >> gives*{Sqrt[-1 + eta^2], 0} >> >> But >> FullSimplify[test, eta < 1] >> gives >> {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]} >> >> Needs["Algebra`ReIm`"] does not seem to help >> >> Real numbers demonstrate what should happen: >> test) /. {{eta -> 0.1}, {eta -> 2}} >> {{0., 0.99498743710662}, {Sqrt[3], 0}} >> >> > > There is nothing really strange here, Mathematica simply can't give a > single simple expression that would cover all the cases that arise. So > you have to split it yourself, for example: > > > FullSimplify[test, eta < -1] > > > {Sqrt[eta^2 - 1], 0} > > FullSimplify[test, eta == -1] > > {0, 0} > > > FullSimplify[test, -1 < eta < 1] > > {0, Sqrt[1 - eta^2]} > > > FullSimplify[test, eta == 1] > > > {0, 0} > > > FullSimplify[test, 1 <= eta] > > > {Sqrt[eta^2 - 1], 0} > > > or, you can combine everything into just two cases: > > FullSimplify[test, eta $B":(B Reals && Abs[eta] < 1] > > {Re[Sqrt[eta^2 - 1]], Im[Sqrt[eta^2 - 1]]} > > > FullSimplify[test, eta $B":(B Reals && Abs[eta] >= 1] > > {Sqrt[eta^2 - 1], 0} > > In fact you do not really need FullSimplify, simple Simplify will do > just as well. > I now noticed that I had somehow pasted the wrong cells at the end of the message above; the two cases actually give: FullSimplify[test, eta $B":(B Reals && Abs[eta] < 1] {0, Sqrt[1 - eta^2]} FullSimplify[test, eta $B":(B Reals && Abs[eta] >= 1] {Sqrt[eta^2 - 1], 0} Andrzej
- References:
- Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]
- From: psa@laplacian.co.uk (peteraptaker)
- Simplify[ {Re[Sqrt[-1 + eta^2]], Im[Sqrt[-1 + eta^2]]}, eta<1]