Re: Plot[f, {x,a,b] vs Plot[{f},[x,a,b]

*To*: mathgroup at smc.vnet.net*Subject*: [mg50665] Re: Plot[f, {x,a,b] vs Plot[{f},[x,a,b]*From*: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>*Date*: Wed, 15 Sep 2004 07:54:45 -0400 (EDT)*Organization*: Universitaet Leipzig*References*: <ci8mdd$bqa$1@smc.vnet.net>*Reply-to*: kuska at informatik.uni-leipzig.de*Sender*: owner-wri-mathgroup at wolfram.com

Hi, Evaluate[] work only if it is direct wrapped arraound the function argument that you wish to Evaluate[] and so in Plot[{Evaluate[__]},_] it has no influence on the evaluation of the Plot[] arguments. Regards Jens Derek wrote: > > I am getting different results when I use Plot[f, {x,a,b] vs > Plot[{f},[x,a,b] (the difference being the {f}), where f is a fairly > complex function. The difference is important because Plot[f] gives > the correct results but I want to be able to plot multiple functions > i.e. Plot[{f,y},{x,a,b}] > > My code is below; any comments appreciated. > > Derek > > ----- > > Clear["Global`*"] > R2 := R1 + \[Gamma] (qj2 + (n - 1)qJ2) > P2 := (1 - R2 o\[Beta] )a - > b(qj2 + (n - 1)qJ2) > revj2 := P2 qj2 > profitj2 := revj2 - c qj2 - oF > profit2 := n profitj2 > CS2 := Integrate[(1 - R2)a - b s, {s, 0, n qj2}] - n revj2 > W2 := CS2 + profit2 > > mqj2opt := qj2 /. Solve[(D[profitj2, qj2] /. qJ2 -> qj2) == 0, qj2] > mW20A := Simplify[ > W2 /. qJ2 -> qj2 /. qj2 -> (mqj2opt /. o\[Beta] -> 1) /. > o\[Beta] -> 1] > mneqmAA := > n /. Last[ > Simplify[Solve[(profitj2 /. qJ2 -> qj2 /. > qj2 -> (mqj2opt /. o\[Beta] -> 1) /. o\[Beta] -> 1) > == 0, > n]]] > mW2AA := Simplify[mW20A /. n -> (mneqmAA) ] > > a = 1; > b = 0.5; > c = 0; > oF = 0.1; > > Plot[Evaluate[mW2AA /. R1 -> 0], {\[Gamma], 0, 1}] > Plot[{Evaluate[mW2AA /. R1 -> 0]}, {\[Gamma], 0, 1}]