Services & Resources / Wolfram Forums
MathGroup Archive
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2004

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Forcing a Derivative

  • To: mathgroup at
  • Subject: [mg50767] Re: [mg50753] Forcing a Derivative
  • From: "David Park" <djmp at>
  • Date: Sun, 19 Sep 2004 21:39:23 -0400 (EDT)
  • Sender: owner-wri-mathgroup at


You have to actually put the FUNCTION in the Derivative[x][function]
statement and then append a [x] to evaluate at an x value. I assume that you
really want the product of the two functions.

f[x_] = x^2 + 7;
g[x_] = 3x^3 + 23;

Derivative[2][Function[x, f[x]g[x]]]
Function[x, 18*x*f[x] + 2*g[x] +
36*x^3 + 18*x*(7 + x^2) + 2*(23 + 3*x^3)

Or using the slot form

Derivative[2][f[#]g[#] &]
2*g[#1] + 18*f[#1]*#1 + 2*Derivative[1][f][#1]*
    Derivative[1][g][#1] &
36*x^3 + 18*x*(7 + x^2) + 2*(23 + 3*x^3)

This checks with the usual method of taking the derivative.

D[f[x]g[x], {x, 2}]
36*x^3 + 18*x*(7 + x^2) + 2*(23 + 3*x^3)

David Park
djmp at

From: Scott Guthery [mailto:sguthery at]
To: mathgroup at

How does one force Derivative[n] to actually take the derivative?

For example if ...

f[x_] = x^2 + 7

g[x_]=3x^3 + 23


Derivative[2][f * g]

just puts a couple of primes on the product rather than actually computing
the dervative.

Thanks for any insight.

Cheers, Scott

  • Prev by Date: Re: How To Prove The Validity Of Dividend Discount H Model
  • Next by Date: Re: Integratecrashes kernel
  • Previous by thread: Re: Forcing a Derivative
  • Next by thread: Re: Forcing a Derivative