[Date Index]
[Thread Index]
[Author Index]
Re: Expanding a Square Root
*To*: mathgroup at smc.vnet.net
*Subject*: [mg50826] Re: [mg50813] Expanding a Square Root
*From*: DrBob <drbob at bigfoot.com>
*Date*: Wed, 22 Sep 2004 04:52:04 -0400 (EDT)
*References*: <200409220411.AAA18714@smc.vnet.net>
*Reply-to*: drbob at bigfoot.com
*Sender*: owner-wri-mathgroup at wolfram.com
>> Expand[(44+9*SQRT(23))^2] yields
>> 3799 + 792*SQRT(23)
No, in Mathematica it's
Expand[(44 + 9*Sqrt[23])^2]
3799 + 792*Sqrt[23]
You could do this:
(44 + 9*Sqrt[23])^2
Sqrt[%]
(44 + 9*Sqrt[23])^2
44 + 9*Sqrt[23]
or this:
Expand[(44 + 9*Sqrt[23])^2]
FullSimplify[Sqrt[%]]
3799 + 792*Sqrt[23]
44 + 9*Sqrt[23]
Bobby
On Wed, 22 Sep 2004 00:11:32 -0400 (EDT), Jim Dars <jim-dars at comcast.net> wrote:
> Hi All,
>
> I should point out that I use Mathematica 4.0 infrequently, thus I may be
> missing the obvious. My problem is as follows:
>
> In the following I use the square root sign from the palette for SQRT
> Expand[(44+9*SQRT(23))^2] yields
> 3799 + 792*SQRT(23)
>
> I now wish to take the square root of 3799 + 792*SQRT(23) to return to my
> original expression. However
>
> Expand[SQRT(3799 + 792*SQRT(23))] merely yields
>
> [SQRT(3799 + 792*SQRT(23))]
>
> What is the proper command to make SQRT(3799 + 792*SQRT(23)) yield
> 44+9*SQRT(23)
>
> Best wishes, Jim
>
>
>
>
>
--
DrBob at bigfoot.com
www.eclecticdreams.net
Prev by Date:
**Re: Expanding a Square Root**
Next by Date:
**Re: Telling Mathematica that a symbol is going to be a List?**
Previous by thread:
**Expanding a Square Root**
Next by thread:
**Re: Expanding a Square Root**
| |